
Runtime Attacks: Buffer Overflow and
Return-Oriented Programming

Prof. Dr.-Ing. Ahmad-Reza Sadeghi
M.Sc. Lucas Davi

Course Secure, Trusted and Trustworthy Computing, Part 1
System Security Lab

http://trust.cased.de
Technische Universität Darmstadt

January 14, 2011

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 1 / 103

http://trust.cased.de

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

1 Introduction

2 Basics
Buffer Overflow (Stack Smashing)
Return-Into-Libc

3 Return-Oriented Programming
Introduction
Attack Technique
Countermeasures

4 Return-Oriented Programming Without Returns
Attack Technique
Countermeasures

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 2 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Motivation: Runtime Attacks

Runtime attacks are major threats to today’s applications

Control flow of an application is compromised at runtime
Typically, runtime attacks include injection of malicious code

Reasons for runtime attacks

Software is written in unsafe languages such as C/C++
⇒ Thus, it suffers from various memory-related vulnerabilities

Most prominent example: Buffer overflow

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 3 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Motivation: Buffer Overflow

Are known for 2 decades

Various techniques exist

Stack Smashing
Heap Overflow
Integer Overflow
Format String

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 4 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Countermeasures

W ⊕ X – Writable Xor Executable

Prevents execution of injected code by marking memory pages either
writable or executable
Implemented in Linux [PaXa] and Windows DEP (Data Execution
Prevention) [Mic06]
Supported by chip manufactures such as Intel and AMD
(NX/XD Bit)

ASLR – Address Space Layout Randomization

Randomizes base addresses of memory segments
Realized in Linux PaX Kernel Patch [PaXb]
Enabled for Windows Vista and Windows 7 [HT07]

Compiler Extensions

Mitigate buffer overflows by introducing stack canaries, pointer
encryption, bound checkers, variable reordering, etc.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 5 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Despite many countermeasures buffer
overflows are still major threats of

today’s applications

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 6 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow Vulnerabilities: Some Statistics

Still a major threat (e.g., in Internet Explorer or Acrobat
Reader, etc.)

2006 2007 2008 2009
0

50

100

150

200

250

300

350

224

255

90

39

141

290

230 232

96
126

112
128

109

152 161
188

5
26 24 28

Other Buffer Overflows (not
precisely specified)
Stack Overflow
Integer Overflow
Heap Overflow
Format StringN

u
m

b
e

r
o
f
V

u
ln

e
ra

b
il
it
ie

s

Figure: Buffer Overflows according to NIST Vulnerability Database

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 7 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

First observations

Many applications are still suffering from buffer overflow
vulnerabilities that allow code injection
Modern systems enforce W ⊕ X to prevent code injection attacks

On the other hand new attack techniques bypass W ⊕ X

Return-Oriented Programming

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 8 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Return-Oriented Programming
Arbitrary (Turing-complete) computation without the need to

inject malicious code

call any library function

modify the original code

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 9 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

1 Introduction

2 Basics
Buffer Overflow (Stack Smashing)
Return-Into-Libc

3 Return-Oriented Programming
Introduction
Attack Technique
Countermeasures

4 Return-Oriented Programming Without Returns
Attack Technique
Countermeasures

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 10 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Background and General Idea

Target of Buffer Overflow Attacks

Subvert the usual execution flow of a program by redirecting it to a
injected (malicious) code

The attack consists of
1 injecting new (malicious) code into some writable memory area,
2 and changing a code pointer (usually the return address) in such a

way that it points to the injected malicious code.

Code Injection

Code can be injected by overflowing a local buffer allocated on the
stack
The target of the injected code is usually to launch a shell to the
adversary
Therefore the injected code is often referred to as shellcode

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 11 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

The Stack Frame

To understand how a buffer overflow attack works, we take a
deeper look at the stack frame and its elements

Arguments

Stack grows

downwards

Stack pointer

Local Variables

Function

Return address

Saved Base Ptr

Stack frame

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 12 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

The Stack Frame (cntd.)

Stack is a last in, first out (LIFO) memory area whereas the
Stack Pointer (SP) points to the top word on the stack
On the x86 architecture the stack grows downwards
The stack can be accessed by two basic operations

1 Push elements onto the stack (SP is decremented)
2 Pop elements off the stack (SP is incremented)

Stack is divided into individual stack frames
Each function call (call instruction) sets up a new stack frame on
top of the stack

1 Function arguments
2 Return address

Upon function return (i.e., a ret instruction is issued), control
transfers to the code pointed to by the return address (i.e., control
transfers back to the caller of the function)

3 Saved Base Pointer
Base pointer of the calling function
Variables/arguments are accessed via an offset to the base pointer

4 Local variables
Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 13 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Vulnerable program

Simple Echo program suffering from a stack overflow
vulnerability

The gets() function does not provide bounds checking

#i n c l u d e <s t d i o . h>
v o i d echo ()
{

char b u f f e r [8 0] ;
g e t s (b u f f e r) ;
p u t s (b u f f e r) ;

}
i n t main ()
{

echo () ;
p r i n t f (”Done”) ;
r e t u r n 0 ;

}

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 14 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(1) Program starts

Stack

Code

Libraries

<main>

...

ins...

call echo()

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 15 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(2) The echo() function is called

Stack

Code

Libraries

<main>

...

ins...

call echo()

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 16 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(3) Call instruction pushes return address onto the stack

Return Address

Stack

Code

Libraries

<main>

...

call echo()

ins...

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 17 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(4) Allocation of saved base pointer and buffer

Local Buffer

buffer[80]

Saved Base Pointer

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 18 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(5) echo() calls gets(buffer) function

Local Buffer

buffer[80]

Saved Base Pointer

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 19 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(6) Adversary transmits malicious code

Local Buffer

buffer[80]

Saved Base Pointer

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

Transmit Malicious Input
SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 20 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(7) Malicious code contains shellcode, pattern bytes, . . .

Pattern 2

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

Transmit Malicious Input
SHELLCODE

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 21 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(8) . . . , and a new return address

Pattern 2

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

SHELLCODE

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 22 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(9) Before echo() returns to main, SP is updated

Pattern 2

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

SHELLCODE

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 23 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(10) echo() issues return resulting in execution of shellcode

Pattern 2

Return Address

Stack

Code

Libraries

<main>

...

ins...

call echo()

SHELLCODE

Pattern 1

SHELLCODE launches shell

to the attacker

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 24 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Conclusion and Limitations

Why the attack is possible?

The gets() function provides no bounds-checking
C/C++ includes various functions providing no bounds-checking,
e.g.,

strcpy(): Copies a string into a buffer
strcat(): Concatenates two strings
scanf(): Read data from stdin (Standard Input)

General defense against code injection attacks is W ⊕ X

With W ⊕ X memory pages can be either marked writable or
executable
Stack is marked writable
Hence, the adversary can only inject his malicious code, but cannot
execute it

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 25 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Return-into-Libc Attacks

Basic idea of return-into-libc

Instead of injecting code use existing code
Subvert the usual execution flow by redirecting it to functions in
linked system libraries
The process’s image consists of

1 writable memory areas like stack and heap,
2 and executable memory areas such as the code segment and the

linked system libraries

The target for useful code can be found in the C library libc

The C library libc

Libc is linked to nearly every Unix program
This library defines system calls and other basic facilities such as
open(), malloc(), printf(), system(), execve(), etc.

E.g., system (“/bin/sh”)

The corresponding attack is referred to as return-into-libc
attack

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 26 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Useful Functions in Libc

Libc provides the following useful functions to the adversary
The system() function

Executes a new program within a running program.

Example: system (“/bin/sh”)
This function executes the /bin/sh file (i.e., a new shell is launched)

The execve() function

Execute a new program and replace the (old) running program.

Example: execve (argv[0], argv, NULL);
argv is a string array, whereas argv[0] = “/bin/sh”
This function launches a new shell and replaces the running program

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 27 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Attack Example

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 28 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(1) Adversary transmits malicious input

Libraries

<system>
...

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

ins...
call echo()

Stack

Transmit Malicious Input

Return Address

Local Buffer
buffer[80]

Saved Base Pointer

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 29 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(2) Input contains pattern bytes, . . .

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

call echo()

Libraries

<system>
...

Stack

Transmit Malicious Input

Return Address

Pattern 2

Pattern 1

SP

call printf()
ins...

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 30 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(3) . . . , a new return address pointing to system(), . . .

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

ins...
call echo()

Libraries

<system>
...

Stack

Transmit Malicious Input

New Return Address

Pattern 2

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 31 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(4) . . . , a return address for system(), . . .

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

ins...
call echo()

Libraries

<system>
...

Stack

Transmit Malicious Input

New Return Address

Pattern 2

Pointer to exit()

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 32 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(5) . . . , and a pointer to the /bin/sh string

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

ins...
call echo()

Libraries

<system>
...

Stack

Transmit Malicious Input

New Return Address

Pattern 2

Pointer to exit()

Pointer to /bin/sh

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 33 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

(6) When echo() returns, system() launches a new shell

system() launches shell

to the attacker

$SHELL = "/bin/sh"

Environment Variables

Code

<main>
...

ins...
call echo()

Libraries

<system>
...

Stack

New Return Address

Pattern 2

Pointer to exit()

Pointer to /bin/sh

Pattern 1

SP

call printf()

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 34 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Buffer Overflow (Stack Smashing)
Return-Into-Libc

Limitations

Return-into-libc attacks bypass security mechanisms such as
the W ⊕ X model, but suffer from the following restrictions

1 The adversary relies on functions available in libc ⇒ The designers of
libc could eliminate functions such as system().

2 The adversary can only invoke one function after the other
⇒ No branching is possible

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 35 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

1 Introduction

2 Basics
Buffer Overflow (Stack Smashing)
Return-Into-Libc

3 Return-Oriented Programming
Introduction
Attack Technique
Countermeasures

4 Return-Oriented Programming Without Returns
Attack Technique
Countermeasures

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 36 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

The Big Picture

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 37 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

The Big Picture

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 38 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

The Big Picture

n mmo r ien ted Pro g ra ingrutRe

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 39 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Architectures

ROP attacks are applicable on a broad range of architectures
1 Intel x86 [Sha07]
2 The SPARC Machine [BRSS08]
3 Atmel AVR [FC08]
4 Z80 Voting Machines [CFK+09]
5 PowerPC [Lin09]
6 ARM [Kor09]

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 40 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Real-World Exploits

Apple iPhone

JailbreakMe [Hal10]
Steal SMS Database [IW10]

Desktop PCs

Acrobat Reader [jdu10]
Adobe Flashplayer [Ado10]

Special-purpose machines

Z80 voting machine [CFK+09]

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 41 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Jailbreak on Apple iPhone

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 42 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(1) Download special crafted PDF file

http://www.jailbreakme.com/_/iPhone3%2c1_4.0.pdf

Send PDF with embedded ROP Payload

JailbreakMe.com

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 43 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(2) ROP attack is launched

http://www.jailbreakme.com/_/iPhone3%2c1_4.0.pdf

Send PDF with embedded ROP Payload

ROP Attack

JailbreakMe.com

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 44 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(3) Download new system files

http://www.jailbreakme.com/_/iPhone3%2c1_4.0.pdf

Send PDF with embedded ROP Payload

ROP Attack

JailbreakMe.com

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 45 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(4) Jailbreak completed

http://www.jailbreakme.com/_/iPhone3%2c1_4.0.pdf

Send PDF with embedded ROP Payload

ROP Attack

JailbreakMe.com

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 46 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Stealing Votes with ROP

Can DREs Provide Long-Lasting Security? The Case of
Return-Oriented Programming and the AVC Advantage
[CFK+09] http://www.youtube.com/watch?v=lsfG3KPrD1I

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 47 / 103

http://www.youtube.com/watch?v=lsfG3KPrD1I

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

ROP Attack on Adobe Reader

W ⊕ X : Data Execution Prevention (DEP)

Adobe Reader enables DEP by default

CVE-2010-0188

Integer Overflow Vulnerability in the libtiff library of Adobe Reader
Use a malicious TIFF image (embedded in a PDF file) to exploit the
vulnerability
However, Adobe Reader enables DEP by default

Attack
1 Create a malicious PDF file containing (1) ROP code and (2)

arbitrary shellcode
2 When the user opens the file, the malicious PDF first exploits the

integer vulnerability
3 Afterwards, ROP is used to exploit W ⊕ X to allocate a memory

page marked as writable (W) and executable (X)
4 Finally the shellcode is copied to that memory page (by means of

ROP) and executed.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 48 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

How does ROP actually work?

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 49 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

General Idea of ROP

Idea

Perform arbitrary computation with return-into-libc techniques

Approach

Use small instruction sequences (e.g., of libc) instead of using
whole functions
Instruction sequences range from 2 to 5 instructions
All sequences end with a ret instruction
Instruction sequences are chained together to a gadget
A gadget performs a particular task (e.g., load, store, xor, or branch)
Afterwards, the adversary enforces his desired actions by combining
the gadgets

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 50 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Relation of Instruction Sequences and Gadgets

Instruction sequence

A sequence of instructions ending in a ret instruction (return)

Gadget

Consists of several instruction sequences

ins1 ins1

ins2

ins1

ins2

ret

ret

ret

ins1

retins3

ins2

ins4

Seq 1 Seq 2 Seq 3 Seq 4

Gadget

ins3

ins2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 51 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Attack Example

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 52 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(1) Program is waiting for input from the user

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Local Buffer

buffer[80]

Return Address

Saved Base Pointer
Stack Pointer

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 53 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(2) Adversary overflows the buffer

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 54 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(3) Input contains return addresses and one argument

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 55 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(4) foo() returns and first sequence is executed

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 56 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(5) Return instruction transfers control to next sequence

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 57 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(6) Return of Sequence 2 transfers control to Sequence 3

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 58 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(7) Pop Argument off the stack

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 59 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(8) Return instruction of Sequence 3 has been reached

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 60 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(9) Return of Sequence 3 transfers control to Sequence 4

ins1 ins1

ins2

ins1

ins2

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 61 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(10) Return of Sequence 4 transfers control to Gadget 2

ins1 ins1

ins2

ins1

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

pop

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

ins2

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 62 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(11) Return of Sequence 1 transfers control to Sequence 2

ins1 ins1

ins2

ins1

ret

ret

ins1ins1

ins2 ins2

ret

ret

ret

ins1

ins4

retins3

Gadget 2 (e.g., ADD)

Gadget 1 (e.g., Load)

ins2 ins2

ins3

ins4

Stack

Return Address 1

Pattern 2

Pattern 1

Return Address 2

Return Address 3

Argument

Return Address 5

Return Address 4

Return Address 6

ins2

pop

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 63 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Unintended Instruction Sequences

Unintended instruction sequences

A sequence of instructions ending in a ret instruction that was never
intended by the programmer
These sequences can be found by jumping in the middle of a valid
instruction resulting in a new unintended instruction sequence

Unintended instruction sequences can be found for the x86
architecture for two reasons

Variable-length instructions: Instructions are not of fixed size
Unaligned memory access: If the native machine word is of size N
then an unaligned memory access means reading from an address
that is not divisible by N.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 64 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Find Unintended Instruction Sequences

Consider the following instructions contained in libc

mov $0x13,%eax

jmp 3aae9

Assembler

/* move 0x13 to the %eax register */

/* jump to (relative) address 3aae9 */

Comment

b8 13 00 00 00

e9 c3 f8 ff ff

Byte values

Instead of starting the interpretation of the byte stream at b8,
starting at the third byte 00 results in following unintended
instruction sequence

Byte values

00 00

Assembler

/* add register value of %al to the word */

Comment

add %al,(%eax)

/* pointed to by the %eax register */

00 e9

c3

/* add registers %cl and %ch */add %ch,%cl

ret /* return instruction */

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 65 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Gadget Example: Memory Load

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 66 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(1) Sequence 1 starts execution

Goal: Load the word 0xDEADBEEF (pointed to by 0x8010ABCD)
into the %eax register

Value of %eax

0 0 0 0 0 0 0 0

Return Address 1

Pattern 2

Pattern 1

0x8010AB8D

Return Address 2

SP

Stack

0xDEADBEEF

pop %eax movl 64(%eax),%eax

ret ret

0x8010ABCD

Memory LOAD Gadget

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 67 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(2) Pop 0x8010AB8D in register %eax

Goal: Load the word 0xDEADBEEF (pointed to by 0x8010ABCD)
into the %eax register

Return Address 1

Pattern 2

Pattern 1

0x8010AB8D

Return Address 2

Stack

0xDEADBEEF

pop %eax movl 64(%eax),%eax

ret ret

0x8010ABCD

Memory LOAD Gadget

Value of %eax

8 0 1 0 A B 8 D

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 68 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(3) Return instruction transfers control to Sequence 2

Goal: Load the word 0xDEADBEEF (pointed to by 0x8010ABCD)
into the %eax register

Return Address 1

Pattern 2

Pattern 1

0x8010AB8D

Return Address 2

Stack

0xDEADBEEF

pop %eax movl 64(%eax),%eax

ret ret

0x8010ABCD

Memory LOAD Gadget

Value of %eax

8 0 1 0 A B 8 D

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 69 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

(4) Move 0xDEADBEEF in register %eax

Goal: Load the word 0xDEADBEEF (pointed to by 0x8010ABCD)
into the %eax register

Return Address 1

Pattern 2

Pattern 1

0x8010AB8D

Return Address 2

Stack

0xDEADBEEF

pop %eax movl 64(%eax),%eax

ret ret

0x8010ABCD

Memory LOAD Gadget

Value of %eax

D E A D B E E F

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 70 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

How to protect return addresses from
malicious modification?

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 71 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Compiler Based Solutions

Selected Approaches

Place a canary before the return address
Backup return addresses onto a separate shadow stack

Realizations
1 Examples for canary based solutions

StackGuard [CPM+98]
ProPolice [Hir]

2 Examples for shadow stack based solutions

Return Address Defender [CH01]
Stack Shield [Ven]

Limitations and disadvantages

Compiler solutions require access to source code
Recompilation
In general, not able to detect unintended instruction sequences

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 72 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Shadow Stack Approach

Instruction

1

2b

3b

Program Stack

Return 2

Return 1

Return 3

Return 4

Shadow Stack

Is Call?
Push TOS onto

Shadow Stack

2a

Compare TOS of

both Stacks
Is Return?

3a

Fetch next

Instruction

Saved
Return 4

Saved
Return 3

Saved
Return 2

Saved
Return 1

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 73 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Hardware Facilitated Solutions

Approach

Use existing hardware features or new hardware modules to enforce
return address protection

Realizations
Embedded microprocessor [FPC09]

Split the stack into data-only and call/return addresses-only parts
Enforce access control on call/return stack

StackGhost [FS01]

Stack Cookies XORed against return addresses
Solution specific to SPARC

Limitation

Require new hardware features [FPC09] or are based on unique
features of a special system [FS01]

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 74 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Introduction
Attack Technique
Countermeasures

Dynamic Binary Instrumentation based on a JIT-Compiler

Approach
Add instrumentation code by compiling an instruction block to new
instructions at runtime (JIT – Just In Time Compilation)
JIT-based instrumentation allows the detection of unintended
sequences

Realizations
Program Shepherding [KBA02]

Checks if a return targets a valid call site, i.e., a return has to target
an instruction which is preceded by a call instruction

ROPdefender [DSW10]
Checks each return address against valid return addresses hold in a
separate shadow stack

Measure return frequency: DynIMA [DSW09], DROP [CXS+09]

Limitations
JIT-based instrumentation adds high performance overhead
Solutions based on measuring the frequency of returns can be
bypassed by executing longer sequences

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 75 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

1 Introduction

2 Basics
Buffer Overflow (Stack Smashing)
Return-Into-Libc

3 Return-Oriented Programming
Introduction
Attack Technique
Countermeasures

4 Return-Oriented Programming Without Returns
Attack Technique
Countermeasures

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 76 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Is it possible to bypass return address
checkers?

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 77 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Return-Oriented Programming
without Returns [CDD+10]

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 78 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

ROP without Returns

Results

Countermeasures that protect return addresses are bypassed
Attack technique for Intel x86 and ARM
Turing-complete gadget set and practical attack instantiation for
both platforms without any return instruction

Approach

Use return-like sequences
Candidates are indirect jumps

On Intel: jmp *%eax

On ARM: blx r3

Obstacles

Target register (%eax, r3) must be initialized before
Returns automatically update the stack pointer; indirect jumps not

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 79 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Return-Like Sequences

On Intel
pop %eax; jmp *%eax

1 Pop target address into %eax
2 The pop instruction automatically increases the stack pointer by four

bytes (similar to a return)
3 Jump to the address stored in %eax

On ARM

No pop-jump sequence present
Use Update-Load-Branch Sequence

1 (Update) – adds r6,#4: Add four bytes to r6
2 (Load) – ldr r5, [r6]: Load target address into r5
3 (Branch) – blx r5: Branch to target address

Problem

Return-like sequences for both platforms are rare

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 80 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Trampoline

Solution

Use a unique Update-Load-Branch (ULB) sequence after each
instruction sequence
ULB is used as a trampoline
All other sequences have to end in an indirect jump to ULB

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 81 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Attack Example

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 82 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(1) Adversary launches a buffer overflow

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Memory

Jump Address 1

Jump Address 2

Jump Address 3

SP

Buffer Overflow

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 83 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(2a) reg1 is initialized with the address of the trampoline

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

SP

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 84 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(2b) Jump Address 1 points to Sequence 1

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

SP

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 85 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(3) Sequence 1 is executed

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

SP

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 86 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(4) Jump to Trampoline enforced

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

SP

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 87 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(5) Stack pointer is updated

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 88 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(6) Jump Address 2 is loaded in register reg2

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

SP

Jump Address 2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 89 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(7) Branch to Sequence 2 is enforced

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

SP

Jump Address 2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 90 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(8) Jump to Trampoline is enforced

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

SP

Jump Address 2

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 91 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(9) Stack Pointer is updated

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Jump Address 2

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 92 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(10) Jump Address 3 is loaded in register reg2

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Jump Address 3

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 93 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

(11) Branch to Sequence 3 is enforced

Gadget

Update−Load−Branch (Trampoline)

Update SP

Load reg2

Branch:

ins1 ins1ins1

ins4

ins2

ins3

jmp *reg1

ins2

jmp *reg1

ins2

ins3

jmp *reg1

jmp *reg2

Libraries

Stack

Jump Address 1

Jump Address 2

Jump Address 3

Buffer Overflow

Value of reg1

Trampoline Address

Value of reg2

Jump Address 3

SP

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 94 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Attack instantiation

Start the ROP attack
Goal: Get control of the stack pointer and the instruction pointer

Usually stack smashing is used for conventional ROP
However, we want to avoid the use of any return instruction

Several techniques are described in [CDD+10]

Example: Setjmp Buffer Overwrite
setjmp()/longjmp() are system calls to allow non-local gotos

1 setjmp(): Store current stack frame and processor registers in a
special buffer (the setjmp buffer)

2 longjmp(): Return to saved stack frame and reset processor registers
to the values stored in the setjmp buffer

Setjmp Buffer Overwrite

A buffer is allocated before the setjmp buffer
Overflow the buffer with ROP payload and overwrite contents of the
setjmp buffer
When longjmp() is called the ROP code is executed

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 95 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Countermeasures

Control Flow Integrity (CFI) [ABEL05, ABE+06]

Derives a control flow graph from a given binary
Labels all branch targets with a special instruction (a label ID)
Rewrites the binary to include new instructions that check at runtime
if an indirect branch (return, jump, call) targets a valid label ID

Limitations of CFI

Requires debugging information stored in Windows PDB files
CFI is built on top of the dynamic binary instrumentation framework
Vulcan which is not publicly available

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 96 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

Address Space Layout Randomization (ASLR)

Approach

Randomizes the base address of each segment (stack, heap,
libraries, etc.)
⇒ Thus, an attacker does not know the start addresses of
instruction sequences

Realizations

Linux PaX Kernel Patch [PaXb]
Available for Windows since MS Vista [HT07]

Limitations
Parts of the code are not randomized, allowing an attacker to
construct some gadgets

[RMPB09]: Overwrite GOT (Global Offset Table) entries with new
values.

Information leakage and brute-force attacks possible

E.g., see [SjGM+04, SD08]

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 97 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

Attack Technique
Countermeasures

G-Free: Gadget-Less Binaries

G-Free [OBL+10]: Technique and Approach

Compiler-based approach to defeat ROP through gadget-less binaries
Requires recompilation
Possible unintended instruction sequences are eliminated through
code transformations
Protection of intended return instructions

Return addresses are encrypted against a random cookie

Protection of intended jump and call instructions

Upon function entry, a function-unique cookie (function identifier xor
random key) is stored on the stack
All indirect jumps/calls are extended with a validation block
The indirect jump/call is only allowed if the validation block
successfully decrypts the cookie

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 98 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

References I

[ABE+06] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, George C. Necula, and Michael Vrable.
XFI: software guards for system address spaces. In OSDI ’06: Proceedings of the 7th
symposium on Operating systems design and implementation, pages 75–88. USENIX
Association, 2006.

[ABEL05] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity:
Principles, implementations, and applications. In CCS ’05: Proceedings of the 12th
ACM Conference on Computer and Communications Security, pages 340–353. ACM,
2005.

[Ado10] Adobe Systems. Security Advisory for Flash Player, Adobe Reader and Acrobat:
CVE-2010-1297.
http://www.adobe.com/support/security/advisories/apsa10-01.html, 2010.

[BRSS08] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good
instructions go bad: Generalizing return-oriented programming to RISC. In CCS ’08:
Proceedings of the 15th ACM Conference on Computer and Communications Security,
pages 27–38. ACM, 2008.

[CDD+10] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy. Return-oriented programming without returns. In
CCS ’10: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pages 559–572. ACM, 2010.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 99 / 103

http://www.adobe.com/support/security/advisories/apsa10-01.html

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

References II

[CFK+09] Stephen Checkoway, Ariel J. Feldman, Brian Kantor, J. Alex Halderman, Edward W.
Felten, and Hovav Shacham. Can DREs provide long-lasting security? The case of
return-oriented programming and the AVC advantage. In Proceedings of EVT/WOTE
2009, 2009.

[CH01] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer overflow
attacks. In International Conference on Distributed Computing Systems, pages
409–417. IEEE Computer Society, 2001.

[CPM+98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard:
automatic adaptive detection and prevention of buffer-overflow attacks. In SSYM’98:
Proceedings of the 7th conference on USENIX Security Symposium, pages 63–78.
USENIX Association, 1998.

[CXS+09] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. DROP:
Detecting return-oriented programming malicious code. In Atul Prakash and Indranil
Gupta, editors, Fifth International Conference on Information Systems Security (ICISS
2010), volume 5905 of Lecture Notes in Computer Science, pages 163–177. Springer,
2009.

[DSW09] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dynamic integrity
measurement and attestation: Towards defense against return-oriented programming
attacks. In Proceedings of the 4th ACM Workshop on Scalable Trusted Computing
(STC’09), pages 49–54. ACM, 2009.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 100 / 103

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

References III

[DSW10] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. ROPdefender: A detection
tool to defend against return-oriented programming attacks. http://www.trust.rub.
de/media/trust/veroeffentlichungen/2010/03/20/ROPdefender.pdf, March
2010.

[FC08] Aurélien Francillon and Claude Castelluccia. Code injection attacks on
harvard-architecture devices. In CCS ’08: Proceedings of the 15th ACM Conference
on Computer and Communications Security, pages 15–26. ACM, 2008.

[FPC09] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending embedded
systems against control flow attacks. In Proceedings of the 1st Workshop on Secure
Execution of Untrusted Code (SecuCode’09), pages 19–26. ACM, 2009.

[FS01] Mike Frantzen and Mike Shuey. StackGhost: Hardware facilitated stack protection. In
SSYM’01: Proceedings of the 10th conference on USENIX Security Symposium,
pages 55–66. USENIX Association, 2001.

[Hal10] Josh Halliday. Jailbreakme released for apple devices. http://www.guardian.co.uk/
technology/blog/2010/aug/02/jailbreakme-released-apple-devices-legal,
August 2010.

[Hir] Hiroaki Etoh. GCC extension for protecting applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp.

[HT07] Michael Howard and Matt Thomlinson. Windows vista isv security.
http://msdn.microsoft.com/en-us/library/bb430720.aspx, April 2007.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 101 / 103

http://www.trust.rub.de/media/trust/veroeffentlichungen/2010/03/20/ROPdefender.pdf
http://www.trust.rub.de/media/trust/veroeffentlichungen/2010/03/20/ROPdefender.pdf
 http://www.guardian.co.uk/technology/blog/2010/aug/02/jailbreakme-released-apple-devices-legal
 http://www.guardian.co.uk/technology/blog/2010/aug/02/jailbreakme-released-apple-devices-legal
http://www.trl.ibm.com/projects/security/ssp
http://msdn.microsoft.com/en-us/library/bb430720.aspx

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

References IV

[IW10] Vincenzo Iozzo and Ralf-Philipp Weinmann. Ralf-Philipp Weinmann & Vincenzo Iozzo
own the iPhone at PWN2OWN. http://blog.zynamics.com/2010/03/24/
ralf-philipp-weinmann-vincenzo-iozzo-own- the-iphone-at-pwn2own/, Mar
2010.

[jdu10] jduck. The latest adobe exploit and session upgrading. http:
//blog.metasploit.com/2010/03/latest-adobe-exploit-and-session.html,
2010.

[KBA02] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security Symposium, pages
191–206. USENIX Association, 2002.

[Kor09] Tim Kornau. Return oriented programming for the ARM architecture.
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf, 2009.
Master thesis, Ruhr-University Bochum, Germany.

[Lin09] Felix Lindner. Developments in Cisco IOS forensics. CONFidence 2.0.
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf,
November 2009.

[Mic06] Microsoft. Data Execution Prevention (DEP).
http://support.microsoft.com/kb/875352/EN-US/, 2006.

[OBL+10] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
G-Free: defeating return-oriented programming through gadget-less binaries. In
ACSAC’10, Annual Computer Security Applications Conference, December 2010.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 102 / 103

http://blog.zynamics.com/2010/03/24/ralf-philipp-weinmann-vincenzo-iozzo-own-
http://blog.zynamics.com/2010/03/24/ralf-philipp-weinmann-vincenzo-iozzo-own-
the-iphone-at-pwn2own/
http://blog.metasploit.com/2010/03/latest-adobe-exploit-and-session.html
http://blog.metasploit.com/2010/03/latest-adobe-exploit-and-session.html
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://support.microsoft.com/kb/875352/EN-US/

Introduction
Basics

Return-Oriented Programming
Return-Oriented Programming Without Returns

References

References V

[PaXa] PaX Team. http://pax.grsecurity.net/.

[PaXb] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[RMPB09] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi.
Surgically returning to randomized lib(c). In Proceedings of the 25th Annual
Computer Security Applications Conference (ACSAC 2009). IEEE, 2009.

[SD08] Alexander Sotirov and Mark Dowd. Bypassing browser memory protections in
Windows Vista.
http://www.phreedom.org/research/bypassing-browser-memory-protections/,
August 2008. Presented at Black Hat 2008.

[Sha07] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In CCS ’07: Proceedings of the 14th ACM
Conference on Computer and Communications Security, pages 552–561. ACM, 2007.

[SjGM+04] Hovav Shacham, Eu jin Goh, Nagendra Modadugu, Ben Pfaff, and Dan Boneh. On
the effectiveness of address-space randomization. In CCS ’04: Proceedings of the 11th
ACM Conference on Computer and Communications Security, pages 298–307. ACM,
2004.

[Ven] Vendicator. Stack Shield: A ”stack smashing” technique protection tool for Linux.
http://www.angelfire.com/sk/stackshield.

Sadeghi, Davi @TU Darmstadt 2010 Secure, Trusted and Trustworthy Computing, Part 1 Runtime Attacks 103 / 103

http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/aslr.txt
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://www.angelfire.com/sk/stackshield

	Runtime Attacks
	Introduction
	Basics
	Buffer Overflow (Stack Smashing)
	Return-Into-Libc

	Return-Oriented Programming
	Introduction
	Attack Technique
	Countermeasures

	Return-Oriented Programming Without Returns
	Attack Technique
	Countermeasures

