
Copyright © 2008 - The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP

http://www.owasp.org

Cross-site Request Forgery (CSRF)

Stephen Carter

carter.stephen@gmail.com

OWASP 2

Agenda

 About the CSRF vulnerability

 Example of CSRF attack

 How to mitigate CSRF vulnerabilites

 Live Demo – Hacme CU

OWASP 3

About CSRF

Discovered in 2001

Number 5 in the OWASP Top 10 (2007)

Incredibly easy to exploit

Most websites are vulnerable

Attacks are on the upswing

OWASP 4

What is CSRF?

An attack that forces an user’s browser to
send requests they didn’t intend to make
To a website that the user is currently authenticated to

To trigger an action without the user’s consent
 E.g. transfer of money, change of password, etc….

Typically requires attacker to have prior access
to and knowledge of the vulnerable application

OWASP

How the web works…

Ad.doubleclick.net

www.myspace.com

Victim

1

Bob browses to

myspace.com

Ping1.unicast.com

googlesyndication.com

Googleanalytics.com

Beacon.scorecardsearch.com

2

Bob’s browser makes

requests to other sites

without his explicit intent

OWASP 6

What is CSRF?

Invisible IMG tags (GET)
<img src=http://fictitiousbank.com/transfer?

fromaccount=Bob&toaccount=MrHacker&Amount=1000

width=“1” height=“1”>

Form (POST)
<form name=“badform” method=“post”

action=“http://fictitiousbank.com/transfer>

<input type=“hidden” name=“fromaccount” value=“Bob”>

<input type=“hidden” name=“toaccount” value=“MrHacker”>

<input type=“hidden” name=“Amount” value=“1000”>

</form>

<script>document.badform.submit()</script>

OWASP

Anatomy of a CSRF Attack

fictitiousbank.com www.somesite.com

Victim

1

Bob logs into his banks

website

Cookie is set

OWASP

Anatomy of a CSRF Attack

fictitiousbank.com www.somesite.com

Victim

2

Bob visits a site with a

malicious IMG tag

<html>

.

.

<img src=”http://fictitiousbank.com/

transfer?fromaccount=bob&toacco

unt=MrHacker&amount=1000”>

.

.

</html>

1

Bob logs into his banks

website

Cookie is set

OWASP

Anatomy of a CSRF Attack

fictitiousbank.com www.somesite.com

Victim

2

Bob visits a site with a

malicious IMG tag

<html>

.

.

<img src=”http://fictitiousbank.com/

transfer?fromaccount=bob&toacco

unt=MrHacker&amount=1000”>

.

.

</html>

3

Bob submits request to

transer money to

attacker’s account

1

Bob logs into his banks

website

Cookie is set

OWASP

Anatomy of a CSRF Attack

fictitiousbank.com www.somesite.com

Victim

2

Bob visits a site with a

malicious IMG tag

<html>

.

.

<img src=”http://fictitiousbank.com/

transfer?fromaccount=bob&toacco

unt=MrHacker&amount=1000”>

.

.

</html>

4

Bank’s web application

validates the session then

completes the transaction

3

Bob submits request to

transer money to

attacker’s account

1

Bob logs into his banks

website

Cookie is set

OWASP

Anatomy of a CSRF Attack

fictitiousbank.com www.somesite.com

Victim

2

Bob visits a site with a

malicious IMG tag

<html>

.

.

<img src=”http://fictitiousbank.com/

transfer?fromaccount=bob&toacco

unt=MrHacker&amount=1000”>

.

.

</html>

4

Bank’s web application

validates the session then

completes the transaction

3

Bob submits request to

transer money to

attacker’s account

1

Bob logs into his banks

website

Cookie is set

5

OWASP

Real World Example – Gmail Filters

Email hijacking technique using Gmail filters

1. User logs into Gmail

2. User visits a site hosting Gmail CSRF attack code

3. User submits request to Gmail, creating a filter to
forward all mail to hacker

http://www.davidairey.com/google-gmail-security-hijack/

OWASP 13

CSRF Mitigation

OWASP 14

CSRF Mitigation - Users

Logoff when you are done using a site!

Use multiple browsers, E.g.
One for accessing sensitive sites/applications

One for surfing freely

OWASP 15

CSRF Mitigation – Developers

Make actions that have effects accept
POST requests only
Many sites restrict the html that users can create, but

still allow arbitrary IMG tags

 tags only support GET request

Javascript, Actionscript, etc. can invisibly submit
POST requests

Check the referrer header
Cannot control/forge from Javascript

Not always present (firewalls, browsers, etc…)

OWASP 16

CSRF Mitigation – Developers

Session time outs
After some period of inactivity, logoff the user

Confirmation pages
Are you sure you want to transfer $1000?

CAPTCHA

Add Session-related information to URLs
Makes it extremely difficult for an attacker to

know/predict the structure of the URLs to attack

Random, One-time tokens in forms

OWASP 17

Demo Time

OWASP 18

Demo App

Hacme Credit Union

Written in PHP, MySQL backend, About 200 LOC

Online banking for the minimalist…

 Show balance

 Show transaction history

 Pay bill

 Logoff

OWASP 19

Demo App – Bill Payment

Demonstrate intended
functionality

Demonstrate CSRF Attack

Explain Mitigation

OWASP 20

Reminders

Next Meeting in Sept/October

Topic Requests?

OWASP Appsec 2009
Washington D.C., Late November)

OWASP 21

Questions, Comments, Thoughts?

Presentations will be online:

http://www.owasp.org/index.php/Suncoast

Thank you for attending!

http://www.owasp.org/index.php/Suncoast

OWASP

References

RSA 2008 Breifing by J. Grossman

http://www.slideshare.net/guestdb261a/csrfrsa2008j
eremiahgrossman-349028/

J. Grossman’s Blog on Gmail CSRF

http://jeremiahgrossman.blogspot.com/2007/01/gmai
l-xsrf-json-call-back-hackery.html

http://www.slideshare.net/guestdb261a/csrfrsa2008jeremiahgrossman-349028/
http://www.slideshare.net/guestdb261a/csrfrsa2008jeremiahgrossman-349028/
http://www.slideshare.net/guestdb261a/csrfrsa2008jeremiahgrossman-349028/
http://www.slideshare.net/guestdb261a/csrfrsa2008jeremiahgrossman-349028/
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html
http://jeremiahgrossman.blogspot.com/2007/01/gmail-xsrf-json-call-back-hackery.html

OWASP

Gmail CSRF Vulnerability2

 The problem: Gmail’s response to following GET request
 http://docs.google.com/data/contacts?out=js&show=ALL&psort=Affinity&callba

ck=google&max=99999

The returned page looked like this:

All your contacts are belong to us

http://docs.google.com/data/contacts?out=js&show=ALL&psort=Affinity&callback=google&max=99999
http://docs.google.com/data/contacts?out=js&show=ALL&psort=Affinity&callback=google&max=99999

OWASP

Gmail CSRF Vulnerability2

Pages like this started to appear on malicious &
compromised websites….

// (Re)declare the google() function

// Send contact info to

// bad guys

All your contacts are belong to us

