
Spring Boot Reference Guide

Authors
Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, Andy Wilkinson, Marcel Overdijk, Christian Dupuis, Sébastien Deleuze

2.0.0.BUILD-SNAPSHOT

Copyright © 2013-2016
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Table of Contents

I. Spring Boot Documentation
1. About the documentation

2. Getting help

3. First steps

4. Working with Spring Boot

5. Learning about Spring Boot features

6. Moving to production

7. Advanced topics

II. Getting started
8. Introducing Spring Boot

9. System Requirements
9.1. Servlet containers

10. Installing Spring Boot
10.1. Installation instructions for the Java developer

10.1.1. Maven installation
10.1.2. Gradle installation

10.2. Installing the Spring Boot CLI
10.2.1. Manual installation
10.2.2. Installation with SDKMAN!
10.2.3. OSX Homebrew installation
10.2.4. MacPorts installation
10.2.5. Command-line completion
10.2.6. Quick start Spring CLI example

10.3. Upgrading from an earlier version of Spring Boot

11. Developing your first Spring Boot application
11.1. Creating the POM
11.2. Adding classpath dependencies
11.3. Writing the code

11.3.1. The @RestController and @RequestMapping annotations
11.3.2. The @EnableAutoConfiguration annotation
11.3.3. The “main” method

11.4. Running the example
11.5. Creating an executable jar

12. What to read next

III. Using Spring Boot
13. Build systems

13.1. Dependency management
13.2. Maven

13.2.1. Inheriting the starter parent
13.2.2. Using Spring Boot without the parent POM
13.2.3. Changing the Java version

Search Documentation

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

1 of 180 05/12/2016 20:33

13.2.4. Using the Spring Boot Maven plugin

13.3. Gradle
13.4. Ant
13.5. Starters

14. Structuring your code
14.1. Using the “default” package
14.2. Locating the main application class

15. Configuration classes
15.1. Importing additional configuration classes
15.2. Importing XML configuration

16. Auto-configuration
16.1. Gradually replacing auto-configuration
16.2. Disabling specific auto-configuration

17. Spring Beans and dependency injection

18. Using the @SpringBootApplication annotation

19. Running your application
19.1. Running from an IDE
19.2. Running as a packaged application
19.3. Using the Maven plugin
19.4. Using the Gradle plugin
19.5. Hot swapping

20. Developer tools
20.1. Property defaults
20.2. Automatic restart

20.2.1. Excluding resources
20.2.2. Watching additional paths
20.2.3. Disabling restart
20.2.4. Using a trigger file
20.2.5. Customizing the restart classloader
20.2.6. Known limitations

20.3. LiveReload
20.4. Global settings
20.5. Remote applications

20.5.1. Running the remote client application
20.5.2. Remote update
20.5.3. Remote debug tunnel

21. Packaging your application for production

22. What to read next

IV. Spring Boot features
23. SpringApplication

23.1. Startup failure
23.2. Customizing the Banner
23.3. Customizing SpringApplication
23.4. Fluent builder API
23.5. Application events and listeners
23.6. Web environment
23.7. Accessing application arguments
23.8. Using the ApplicationRunner or CommandLineRunner
23.9. Application exit
23.10. Admin features

24. Externalized Configuration
24.1. Configuring random values
24.2. Accessing command line properties
24.3. Application property files
24.4. Profile-specific properties

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

2 of 180 05/12/2016 20:33

24.5. Placeholders in properties
24.6. Using YAML instead of Properties

24.6.1. Loading YAML
24.6.2. Exposing YAML as properties in the Spring Environment
24.6.3. Multi-profile YAML documents
24.6.4. YAML shortcomings
24.6.5. Merging YAML lists

24.7. Type-safe Configuration Properties
24.7.1. Third-party configuration
24.7.2. Relaxed binding
24.7.3. Properties conversion
24.7.4. @ConfigurationProperties Validation
24.7.5. @ConfigurationProperties vs. @Value

25. Profiles
25.1. Adding active profiles
25.2. Programmatically setting profiles
25.3. Profile-specific configuration files

26. Logging
26.1. Log format
26.2. Console output

26.2.1. Color-coded output

26.3. File output
26.4. Log Levels
26.5. Custom log configuration
26.6. Logback extensions

26.6.1. Profile-specific configuration
26.6.2. Environment properties

27. Developing web applications
27.1. The ‘Spring Web MVC framework’

27.1.1. Spring MVC auto-configuration
27.1.2. HttpMessageConverters
27.1.3. Custom JSON Serializers and Deserializers
27.1.4. MessageCodesResolver
27.1.5. Static Content
27.1.6. ConfigurableWebBindingInitializer
27.1.7. Template engines
27.1.8. Error Handling

Custom error pages
Mapping error pages outside of Spring MVC
Error Handling on WebSphere Application Server

27.1.9. Spring HATEOAS
27.1.10. CORS support

27.2. JAX-RS and Jersey
27.3. Embedded servlet container support

27.3.1. Servlets, Filters, and listeners
Registering Servlets, Filters, and listeners as Spring beans

27.3.2. Servlet Context Initialization
Scanning for Servlets, Filters, and listeners

27.3.3. The EmbeddedWebApplicationContext
27.3.4. Customizing embedded servlet containers

Programmatic customization
Customizing ConfigurableEmbeddedServletContainer directly

27.3.5. JSP limitations

28. Security
28.1. OAuth2

28.1.1. Authorization Server
28.1.2. Resource Server

28.2. Token Type in User Info
28.3. Customizing the User Info RestTemplate

28.3.1. Client
28.3.2. Single Sign On

28.4. Actuator Security

29. Working with SQL databases
29.1. Configure a DataSource

29.1.1. Embedded Database Support
29.1.2. Connection to a production database
29.1.3. Connection to a JNDI DataSource

29.2. Using JdbcTemplate
29.3. JPA and ‘Spring Data’

29.3.1. Entity Classes
29.3.2. Spring Data JPA Repositories
29.3.3. Creating and dropping JPA databases

29.4. Using H2’s web console
29.4.1. Changing the H2 console’s path

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

3 of 180 05/12/2016 20:33

29.4.2. Securing the H2 console

29.5. Using jOOQ
29.5.1. Code Generation
29.5.2. Using DSLContext
29.5.3. Customizing jOOQ

30. Working with NoSQL technologies
30.1. Redis

30.1.1. Connecting to Redis

30.2. MongoDB
30.2.1. Connecting to a MongoDB database
30.2.2. MongoTemplate
30.2.3. Spring Data MongoDB repositories
30.2.4. Embedded Mongo

30.3. Neo4j
30.3.1. Connecting to a Neo4j database
30.3.2. Using the embedded mode
30.3.3. Neo4jSession
30.3.4. Spring Data Neo4j repositories
30.3.5. Repository example

30.4. Gemfire
30.5. Solr

30.5.1. Connecting to Solr
30.5.2. Spring Data Solr repositories

30.6. Elasticsearch
30.6.1. Connecting to Elasticsearch using Jest
30.6.2. Connecting to Elasticsearch using Spring Data
30.6.3. Spring Data Elasticsearch repositories

30.7. Cassandra
30.7.1. Connecting to Cassandra
30.7.2. Spring Data Cassandra repositories

30.8. Couchbase
30.8.1. Connecting to Couchbase
30.8.2. Spring Data Couchbase repositories

31. Caching
31.1. Supported cache providers

31.1.1. Generic
31.1.2. JCache (JSR-107)
31.1.3. EhCache 2.x
31.1.4. Hazelcast
31.1.5. Infinispan
31.1.6. Couchbase
31.1.7. Redis
31.1.8. Caffeine
31.1.9. Simple
31.1.10. None

32. Messaging
32.1. JMS

32.1.1. ActiveMQ support
32.1.2. Artemis support
32.1.3. Using a JNDI ConnectionFactory
32.1.4. Sending a message
32.1.5. Receiving a message

32.2. AMQP
32.2.1. RabbitMQ support
32.2.2. Sending a message
32.2.3. Receiving a message

32.3. Apache Kafka Support
32.4. Sending a Message
32.5. Receiving a Message
32.6. Additional Kafka Properties

33. Calling REST services
33.1. RestTemplate customization

34. Validation

35. Sending email

36. Distributed Transactions with JTA
36.1. Using an Atomikos transaction manager
36.2. Using a Bitronix transaction manager
36.3. Using a Narayana transaction manager
36.4. Using a Java EE managed transaction manager
36.5. Mixing XA and non-XA JMS connections
36.6. Supporting an alternative embedded transaction manager

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

4 of 180 05/12/2016 20:33

37. Hazelcast

38. Spring Integration

39. Spring Session

40. Monitoring and management over JMX

41. Testing
41.1. Test scope dependencies
41.2. Testing Spring applications
41.3. Testing Spring Boot applications

41.3.1. Detecting test configuration
41.3.2. Excluding test configuration
41.3.3. Working with random ports
41.3.4. Mocking and spying beans
41.3.5. Auto-configured tests
41.3.6. Auto-configured JSON tests
41.3.7. Auto-configured Spring MVC tests
41.3.8. Auto-configured Data JPA tests
41.3.9. Auto-configured JDBC tests
41.3.10. Auto-configured REST clients
41.3.11. Auto-configured Spring REST Docs tests
41.3.12. Using Spock to test Spring Boot applications

41.4. Test utilities
41.4.1. ConfigFileApplicationContextInitializer
41.4.2. EnvironmentTestUtils
41.4.3. OutputCapture
41.4.4. TestRestTemplate

42. WebSockets

43. Web Services

44. Creating your own auto-configuration
44.1. Understanding auto-configured beans
44.2. Locating auto-configuration candidates
44.3. Condition annotations

44.3.1. Class conditions
44.3.2. Bean conditions
44.3.3. Property conditions
44.3.4. Resource conditions
44.3.5. Web application conditions
44.3.6. SpEL expression conditions

44.4. Creating your own starter
44.4.1. Naming
44.4.2. Autoconfigure module
44.4.3. Starter module

45. What to read next

V. Spring Boot Actuator: Production-ready features
46. Enabling production-ready features

47. Endpoints
47.1. Customizing endpoints
47.2. Hypermedia for actuator MVC endpoints
47.3. CORS support
47.4. Adding custom endpoints
47.5. Health information
47.6. Security with HealthIndicators

47.6.1. Auto-configured HealthIndicators
47.6.2. Writing custom HealthIndicators

47.7. Application information
47.7.1. Auto-configured InfoContributors
47.7.2. Custom application info information
47.7.3. Git commit information
47.7.4. Build information
47.7.5. Writing custom InfoContributors

48. Monitoring and management over HTTP
48.1. Securing sensitive endpoints
48.2. Customizing the management endpoint paths
48.3. Customizing the management server port
48.4. Configuring management-specific SSL

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

5 of 180 05/12/2016 20:33

48.5. Customizing the management server address
48.6. Disabling HTTP endpoints
48.7. HTTP health endpoint access restrictions

49. Monitoring and management over JMX
49.1. Customizing MBean names
49.2. Disabling JMX endpoints
49.3. Using Jolokia for JMX over HTTP

49.3.1. Customizing Jolokia
49.3.2. Disabling Jolokia

50. Loggers
50.1. Configure a Logger

51. Metrics
51.1. System metrics
51.2. DataSource metrics
51.3. Cache metrics
51.4. Tomcat session metrics
51.5. Recording your own metrics
51.6. Adding your own public metrics
51.7. Special features with Java 8
51.8. Metric writers, exporters and aggregation

51.8.1. Example: Export to Redis
51.8.2. Example: Export to Open TSDB
51.8.3. Example: Export to Statsd
51.8.4. Example: Export to JMX

51.9. Aggregating metrics from multiple sources
51.10. Dropwizard Metrics
51.11. Message channel integration

52. Auditing

53. Tracing
53.1. Custom tracing

54. Process monitoring
54.1. Extend configuration
54.2. Programmatically

55. What to read next

VI. Deploying Spring Boot applications
56. Deploying to the cloud

56.1. Cloud Foundry
56.1.1. Binding to services

56.2. Heroku
56.3. OpenShift
56.4. Boxfuse and Amazon Web Services
56.5. Google App Engine

57. Installing Spring Boot applications
57.1. Unix/Linux services

57.1.1. Installation as an init.d service (System V)
Securing an init.d service

57.1.2. Installation as a systemd service
57.1.3. Customizing the startup script

Customizing script when it’s written
Customizing script when it runs

57.2. Microsoft Windows services

58. What to read next

VII. Spring Boot CLI
59. Installing the CLI

60. Using the CLI

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

6 of 180 05/12/2016 20:33

60.1. Running applications using the CLI
60.1.1. Deduced “grab” dependencies
60.1.2. Deduced “grab” coordinates
60.1.3. Default import statements
60.1.4. Automatic main method
60.1.5. Custom dependency management

60.2. Testing your code
60.3. Applications with multiple source files
60.4. Packaging your application
60.5. Initialize a new project
60.6. Using the embedded shell
60.7. Adding extensions to the CLI

61. Developing application with the Groovy beans DSL

62. Configuring the CLI with settings.xml

63. What to read next

VIII. Build tool plugins
64. Spring Boot Maven plugin

64.1. Including the plugin
64.2. Packaging executable jar and war files

65. Spring Boot Gradle plugin
65.1. Including the plugin
65.2. Gradle dependency management
65.3. Packaging executable jar and war files
65.4. Running a project in-place
65.5. Spring Boot plugin configuration
65.6. Repackage configuration
65.7. Repackage with custom Gradle configuration

65.7.1. Configuration options
65.7.2. Available layouts
65.7.3. Using a custom layout

65.8. Understanding how the Gradle plugin works
65.9. Publishing artifacts to a Maven repository using Gradle

65.9.1. Configuring Gradle to produce a pom that inherits dependency management
65.9.2. Configuring Gradle to produce a pom that imports dependency management

66. Spring Boot AntLib module
66.1. Spring Boot Ant tasks

66.1.1. spring-boot:exejar
66.1.2. Examples

66.2. spring-boot:findmainclass
66.2.1. Examples

67. Supporting other build systems
67.1. Repackaging archives
67.2. Nested libraries
67.3. Finding a main class
67.4. Example repackage implementation

68. What to read next

IX. ‘How-to’ guides
69. Spring Boot application

69.1. Create your own FailureAnalyzer
69.2. Troubleshoot auto-configuration
69.3. Customize the Environment or ApplicationContext before it starts
69.4. Build an ApplicationContext hierarchy (adding a parent or root context)
69.5. Create a non-web application

70. Properties & configuration
70.1. Automatically expand properties at build time

70.1.1. Automatic property expansion using Maven
70.1.2. Automatic property expansion using Gradle

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

7 of 180 05/12/2016 20:33

70.2. Externalize the configuration of SpringApplication
70.3. Change the location of external properties of an application
70.4. Use ‘short’ command line arguments
70.5. Use YAML for external properties
70.6. Set the active Spring profiles
70.7. Change configuration depending on the environment
70.8. Discover built-in options for external properties

71. Embedded servlet containers
71.1. Add a Servlet, Filter or Listener to an application

71.1.1. Add a Servlet, Filter or Listener using a Spring bean
Disable registration of a Servlet or Filter

71.1.2. Add Servlets, Filters, and Listeners using classpath scanning

71.2. Change the HTTP port
71.3. Use a random unassigned HTTP port
71.4. Discover the HTTP port at runtime
71.5. Configure SSL
71.6. Configure Access Logging
71.7. Use behind a front-end proxy server

71.7.1. Customize Tomcat’s proxy configuration

71.8. Configure Tomcat
71.9. Enable Multiple Connectors with Tomcat
71.10. Use Tomcat’s LegacyCookieProcessor
71.11. Use Jetty instead of Tomcat
71.12. Configure Jetty
71.13. Use Undertow instead of Tomcat
71.14. Configure Undertow
71.15. Enable Multiple Listeners with Undertow
71.16. Use Tomcat 7.x or 8.0

71.16.1. Use Tomcat 7.x or 8.0 with Maven
71.16.2. Use Tomcat 7.x or 8.0 with Gradle

71.17. Use Jetty 9.2
71.17.1. Use Jetty 9.2 with Maven
71.17.2. Use Jetty 9.2 with Gradle

71.18. Use Jetty 8
71.18.1. Use Jetty 8 with Maven
71.18.2. Use Jetty 8 with Gradle

71.19. Create WebSocket endpoints using @ServerEndpoint
71.20. Enable HTTP response compression

72. Spring MVC
72.1. Write a JSON REST service
72.2. Write an XML REST service
72.3. Customize the Jackson ObjectMapper
72.4. Customize the @ResponseBody rendering
72.5. Handling Multipart File Uploads
72.6. Switch off the Spring MVC DispatcherServlet
72.7. Switch off the Default MVC configuration
72.8. Customize ViewResolvers
72.9. Use Thymeleaf 3

73. HTTP clients
73.1. Configure RestTemplate to use a proxy

74. Logging
74.1. Configure Logback for logging

74.1.1. Configure logback for file only output

74.2. Configure Log4j for logging
74.2.1. Use YAML or JSON to configure Log4j 2

75. Data Access
75.1. Configure a DataSource
75.2. Configure Two DataSources
75.3. Use Spring Data repositories
75.4. Separate @Entity definitions from Spring configuration

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

8 of 180 05/12/2016 20:33

75.5. Configure JPA properties
75.6. Use a custom EntityManagerFactory
75.7. Use Two EntityManagers
75.8. Use a traditional persistence.xml
75.9. Use Spring Data JPA and Mongo repositories
75.10. Expose Spring Data repositories as REST endpoint
75.11. Configure a component that is used by JPA

76. Database initialization
76.1. Initialize a database using JPA
76.2. Initialize a database using Hibernate
76.3. Initialize a database using Spring JDBC
76.4. Initialize a Spring Batch database
76.5. Use a higher-level database migration tool

76.5.1. Execute Flyway database migrations on startup
76.5.2. Execute Liquibase database migrations on startup

77. Messaging
77.1. Disable transacted JMS session

78. Batch applications
78.1. Execute Spring Batch jobs on startup

79. Actuator
79.1. Change the HTTP port or address of the actuator endpoints
79.2. Customize the ‘whitelabel’ error page
79.3. Actuator and Jersey

80. Security
80.1. Switch off the Spring Boot security configuration
80.2. Change the AuthenticationManager and add user accounts
80.3. Enable HTTPS when running behind a proxy server

81. Hot swapping
81.1. Reload static content
81.2. Reload templates without restarting the container

81.2.1. Thymeleaf templates
81.2.2. FreeMarker templates
81.2.3. Groovy templates

81.3. Fast application restarts
81.4. Reload Java classes without restarting the container

81.4.1. Configuring Spring Loaded for use with Maven
81.4.2. Configuring Spring Loaded for use with Gradle and IntelliJ IDEA

82. Build
82.1. Generate build information
82.2. Generate git information
82.3. Customize dependency versions
82.4. Create an executable JAR with Maven
82.5. Use a Spring Boot application as a dependency
82.6. Extract specific libraries when an executable jar runs
82.7. Create a non-executable JAR with exclusions
82.8. Remote debug a Spring Boot application started with Maven
82.9. Remote debug a Spring Boot application started with Gradle
82.10. Build an executable archive from Ant without using spring-boot-antlib
82.11. How to use Java 6

82.11.1. Embedded servlet container compatibility
82.11.2. Jackson
82.11.3. JTA API compatibility

83. Traditional deployment
83.1. Create a deployable war file
83.2. Create a deployable war file for older servlet containers
83.3. Convert an existing application to Spring Boot
83.4. Deploying a WAR to WebLogic
83.5. Deploying a WAR in an Old (Servlet 2.5) Container

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

9 of 180 05/12/2016 20:33

X. Appendices
A. Common application properties

B. Configuration meta-data
B.1. Meta-data format

B.1.1. Group Attributes
B.1.2. Property Attributes
B.1.3. Hint Attributes
B.1.4. Repeated meta-data items

B.2. Providing manual hints
B.2.1. Value hint
B.2.2. Value provider

Any
Class reference
Handle As
Logger name
Spring bean reference
Spring profile name

B.3. Generating your own meta-data using the annotation processor
B.3.1. Nested properties
B.3.2. Adding additional meta-data

C. Auto-configuration classes
C.1. From the “spring-boot-autoconfigure” module
C.2. From the “spring-boot-actuator” module

D. Test auto-configuration annotations

E. The executable jar format
E.1. Nested JARs

E.1.1. The executable jar file structure
E.1.2. The executable war file structure

E.2. Spring Boot’s “JarFile” class
E.2.1. Compatibility with the standard Java “JarFile”

E.3. Launching executable jars
E.3.1. Launcher manifest
E.3.2. Exploded archives

E.4. PropertiesLauncher Features
E.5. Executable jar restrictions

E.5.1. Zip entry compression
E.5.2. System ClassLoader

E.6. Alternative single jar solutions

F. Dependency versions

Part I. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. Think of it as map for the rest of the document. You can read this reference guide in a
linear fashion, or you can skip sections if something doesn’t interest you.

1. About the documentation
The Spring Boot reference guide is available as html, pdf and epub documents. The latest copy is available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

2. Getting help
Having trouble with Spring Boot, We’d like to help!

Try the How-to’s — they provide solutions to the most common questions.
Learn the Spring basics — Spring Boot builds on many other Spring projects, check the spring.io web-site for a wealth of reference documentation. If you are just
starting out with Spring, try one of the guides.
Ask a question - we monitor stackoverflow.com for questions tagged with spring-boot .
Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

All of Spring Boot is open source, including the documentation! If you find problems with the docs; or if you just want to improve them, please get involved.

3. First steps

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

10 of 180 05/12/2016 20:33

If you’re just getting started with Spring Boot, or 'Spring' in general, this is the place to start!

From scratch: Overview | Requirements | Installation
Tutorial: Part 1 | Part 2
Running your example: Part 1 | Part 2

4. Working with Spring Boot
Ready to actually start using Spring Boot? We’ve got you covered.

Build systems: Maven | Gradle | Ant | Starters
Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and Dependency Injection
Running your code IDE | Packaged | Maven | Gradle
Packaging your app: Production jars
Spring Boot CLI: Using the CLI

5. Learning about Spring Boot features
Need more details about Spring Boot’s core features? This is for you!

Core Features: SpringApplication | External Configuration | Profiles | Logging
Web Applications: MVC | Embedded Containers
Working with data: SQL | NO-SQL
Messaging: Overview | JMS
Testing: Overview | Boot Applications | Utils
Extending: Auto-configuration | @Conditions

6. Moving to production
When you’re ready to push your Spring Boot application to production, we’ve got some tricks that you might like!

Management endpoints: Overview | Customization
Connection options: HTTP | JMX |
Monitoring: Metrics | Auditing | Tracing | Process

7. Advanced topics
Lastly, we have a few topics for the more advanced user.

Deploy Spring Boot Applications: Cloud Deployment | OS Service
Build tool plugins: Maven | Gradle
Appendix: Application Properties | Auto-configuration classes | Executable Jars

Part II. Getting started

If you’re just getting started with Spring Boot, or 'Spring' in general, this is the section for you! Here we answer the basic “what?”, “how?” and “why?” questions. You’ll find
a gentle introduction to Spring Boot along with installation instructions. We’ll then build our first Spring Boot application, discussing some core principles as we go.

8. Introducing Spring Boot
Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can “just run”. We take an opinionated view of the Spring platform
and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started using java -jar or more traditional war deployments. We also provide a command line tool
that runs “spring scripts”.

Our primary goals are:

Provide a radically faster and widely accessible getting started experience for all Spring development.
Be opinionated out of the box, but get out of the way quickly as requirements start to diverge from the defaults.
Provide a range of non-functional features that are common to large classes of projects (e.g. embedded servers, security, metrics, health checks, externalized
configuration).
Absolutely no code generation and no requirement for XML configuration.

9. System Requirements
By default, Spring Boot 2.0.0.BUILD-SNAPSHOT requires Java 7 and Spring Framework 5.0.0.BUILD-SNAPSHOT or above. You can use Spring Boot with Java 6 with
some additional configuration. See Section 82.11, “How to use Java 6” for more details. Explicit build support is provided for Maven (3.2+) and Gradle 2 (2.9 or later).
Gradle 3 is not supported.

Although you can use Spring Boot with Java 6 or 7, we generally recommend Java 8 if at all possible.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

11 of 180 05/12/2016 20:33

9.1 Servlet containers
The following embedded servlet containers are supported out of the box:

Name Servlet Version Java Version

Tomcat 8 3.1 Java 7+

Tomcat 7 3.0 Java 6+

Jetty 9.3 3.1 Java 8+

Jetty 9.2 3.1 Java 7+

Jetty 8 3.0 Java 6+

Undertow 1.3 3.1 Java 7+

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.

10. Installing Spring Boot
Spring Boot can be used with “classic” Java development tools or installed as a command line tool. Regardless, you will need Java SDK v1.6 or higher. You should check
your current Java installation before you begin:

$ java -version

If you are new to Java development, or if you just want to experiment with Spring Boot you might want to try the Spring Boot CLI first, otherwise, read on for “classic”
installation instructions.

Although Spring Boot is compatible with Java 1.6, if possible, you should consider using the latest version of Java.

10.1 Installation instructions for the Java developer
You can use Spring Boot in the same way as any standard Java library. Simply include the appropriate spring-boot-*.jar files on your classpath. Spring Boot does
not require any special tools integration, so you can use any IDE or text editor; and there is nothing special about a Spring Boot application, so you can run and debug as
you would any other Java program.

Although you could just copy Spring Boot jars, we generally recommend that you use a build tool that supports dependency management (such as Maven or Gradle).

10.1.1 Maven installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you don’t already have Maven installed you can follow the instructions at maven.apache.org.

On many operating systems Maven can be installed via a package manager. If you’re an OSX Homebrew user try brew install maven . Ubuntu users
can run sudo apt-get install maven .

Spring Boot dependencies use the org.springframework.boot groupId . Typically your Maven POM file will inherit from the spring-boot-starter-parent
project and declare dependencies to one or more “Starters”. Spring Boot also provides an optional Maven plugin to create executable jars.

Here is a typical pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupId>
<artifactId>myproject</artifactId>
<version>0.0.1-SNAPSHOT</version>

<!-- Inherit defaults from Spring Boot -->
<parent>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>

</parent>

<!-- Add typical dependencies for a web application -->
<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
</dependencies>

<!-- Package as an executable jar -->
<build>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

12 of 180 05/12/2016 20:33

<plugins>
<plugin>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

<!-- Add Spring repositories -->
<!-- (you don't need this if you are using a .RELEASE version) -->
<repositories>

<repository>
<id>spring-snapshots</id>
<url>http://repo.spring.io/snapshot</url>
<snapshots><enabled>true</enabled></snapshots>

</repository>
<repository>

<id>spring-milestones</id>
<url>http://repo.spring.io/milestone</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<id>spring-snapshots</id>
<url>http://repo.spring.io/snapshot</url>

</pluginRepository>
<pluginRepository>

<id>spring-milestones</id>
<url>http://repo.spring.io/milestone</url>

</pluginRepository>
</pluginRepositories>

</project>

The spring-boot-starter-parent is a great way to use Spring Boot, but it might not be suitable all of the time. Sometimes you may need to inherit
from a different parent POM, or you might just not like our default settings. See Section 13.2.2, “Using Spring Boot without the parent POM” for an
alternative solution that uses an import scope.

10.1.2 Gradle installation

Spring Boot is compatible with Gradle 2 (2.9 or later). Gradle 2.14.1 is recommended and Gradle 3 is not supported. If you don’t already have Gradle installed you can
follow the instructions at www.gradle.org/.

Spring Boot dependencies can be declared using the org.springframework.boot group . Typically your project will declare dependencies to one or more
“Starters”. Spring Boot provides a useful Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project. It’s a small script and library that you commit alongside your code
to bootstrap the build process. See docs.gradle.org/2.14.1/userguide/gradle_wrapper.html for details.

Here is a typical build.gradle file:

buildscript {
 repositories {
 jcenter()
 maven { url 'http://repo.spring.io/snapshot' }
 maven { url 'http://repo.spring.io/milestone' }
 }
 dependencies {
 classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.0.0.BUILD-SNAPSHOT'
 }
}

apply plugin: 'java'
apply plugin: 'org.springframework.boot'

jar {
 baseName = 'myproject'
 version = '0.0.1-SNAPSHOT'
}

repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}

10.2 Installing the Spring Boot CLI
The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring. It allows you to run Groovy scripts, which means that you have a

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

13 of 180 05/12/2016 20:33

familiar Java-like syntax, without so much boilerplate code.

You don’t need to use the CLI to work with Spring Boot but it’s definitely the quickest way to get a Spring application off the ground.

10.2.1 Manual installation

You can download the Spring CLI distribution from the Spring software repository:

spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.zip
spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary: there is a spring script (spring.bat for Windows) in a bin/
directory in the .zip file, or alternatively you can use java -jar with the .jar file (the script helps you to be sure that the classpath is set correctly).

10.2.2 Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of various binary SDKs, including Groovy and the Spring Boot CLI. Get
SDKMAN! from sdkman.io and install Spring Boot with

$ sdk install springboot
$ spring --version
Spring Boot v2.0.0.BUILD-SNAPSHOT

If you are developing features for the CLI and want easy access to the version you just built, follow these extra instructions.

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-2.0.0.BUILD-SNAPSHOT-bin/spring-2.0.0.BUILD-SNAPSHOT/
$ sdk default springboot dev
$ spring --version
Spring CLI v2.0.0.BUILD-SNAPSHOT

This will install a local instance of spring called the dev instance. It points at your target build location, so every time you rebuild Spring Boot, spring will be
up-to-date.

You can see it by doing this:

$ sdk ls springboot

==
Available Springboot Versions
==
> + dev
* 2.0.0.BUILD-SNAPSHOT

==
+ - local version
* - installed
> - currently in use
==

10.2.3 OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install the Spring Boot CLI is:

$ brew tap pivotal/tap
$ brew install springboot

Homebrew will install spring to /usr/local/bin .

If you don’t see the formula, your installation of brew might be out-of-date. Just execute brew update and try again.

10.2.4 MacPorts installation

If you are on a Mac and using MacPorts, all you need to do to install the Spring Boot CLI is:

$ sudo port install spring-boot-cli

10.2.5 Command-line completion

Spring Boot CLI ships with scripts that provide command completion for BASH and zsh shells. You can source the script (also named spring) in any shell, or put it in
your personal or system-wide bash completion initialization. On a Debian system the system-wide scripts are in /shell-completion/bash and all scripts in that
directory are executed when a new shell starts. To run the script manually, e.g. if you have installed using SDKMAN!

$. ~/.sdkman/candidates/springboot/current/shell-completion/bash/spring
$ spring <HIT TAB HERE>
 grab help jar run test version

If you install Spring Boot CLI using Homebrew or MacPorts, the command-line completion scripts are automatically registered with your shell.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

14 of 180 05/12/2016 20:33

10.2.6 Quick start Spring CLI example

Here’s a really simple web application that you can use to test your installation. Create a file called app.groovy :

@RestController
class ThisWillActuallyRun {

@RequestMapping("/")
 String home() {

"Hello World!"
 }

}

Then simply run it from a shell:

$ spring run app.groovy

It will take some time when you first run the application as dependencies are downloaded. Subsequent runs will be much quicker.

Open localhost:8080 in your favorite web browser and you should see the following output:

Hello World!

10.3 Upgrading from an earlier version of Spring Boot
If you are upgrading from an earlier release of Spring Boot check the “release notes” hosted on the project wiki. You’ll find upgrade instructions along with a list of “new
and noteworthy” features for each release.

To upgrade an existing CLI installation use the appropriate package manager command (for example brew upgrade) or, if you manually installed the CLI, follow the
standard instructions remembering to update your PATH environment variable to remove any older references.

11. Developing your first Spring Boot application
Let’s develop a simple “Hello World!” web application in Java that highlights some of Spring Boot’s key features. We’ll use Maven to build this project since most IDEs
support it.

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you’re looking to solve a specific problem; check there first.
You can shortcut the steps below by going to start.spring.io and choosing the web starter from the dependencies searcher. This will automatically generate
a new project structure so that you can start coding right the way. Check the documentation for more details.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version
java version "1.7.0_51"
Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)

$ mvn -v
Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-11T13:58:10-07:00)
Maven home: /Users/user/tools/apache-maven-3.1.1
Java version: 1.7.0_51, vendor: Oracle Corporation

This sample needs to be created in its own folder. Subsequent instructions assume that you have created a suitable folder and that it is your “current
directory”.

11.1 Creating the POM
We need to start by creating a Maven pom.xml file. The pom.xml is the recipe that will be used to build your project. Open your favorite text editor and add the
following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupId>
<artifactId>myproject</artifactId>
<version>0.0.1-SNAPSHOT</version>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>

</parent>

<!-- Additional lines to be added here... -->

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

15 of 180 05/12/2016 20:33

<!-- (you don't need this if you are using a .RELEASE version) -->
<repositories>

<repository>
<id>spring-snapshots</id>
<url>http://repo.spring.io/snapshot</url>
<snapshots><enabled>true</enabled></snapshots>

</repository>
<repository>

<id>spring-milestones</id>
<url>http://repo.spring.io/milestone</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<id>spring-snapshots</id>
<url>http://repo.spring.io/snapshot</url>

</pluginRepository>
<pluginRepository>

<id>spring-milestones</id>
<url>http://repo.spring.io/milestone</url>

</pluginRepository>
</pluginRepositories>

</project>

This should give you a working build, you can test it out by running mvn package (you can ignore the “jar will be empty - no content was marked for inclusion!” warning
for now).

At this point you could import the project into an IDE (most modern Java IDE’s include built-in support for Maven). For simplicity, we will continue to use a
plain text editor for this example.

11.2 Adding classpath dependencies
Spring Boot provides a number of “Starters” that make easy to add jars to your classpath. Our sample application has already used spring-boot-starter-parent
in the parent section of the POM. The spring-boot-starter-parent is a special starter that provides useful Maven defaults. It also provides a
dependency-management section so that you can omit version tags for “blessed” dependencies.

Other “Starters” simply provide dependencies that you are likely to need when developing a specific type of application. Since we are developing a web application, we
will add a spring-boot-starter-web dependency — but before that, let’s look at what we currently have.

$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT

The mvn dependency:tree command prints a tree representation of your project dependencies. You can see that spring-boot-starter-parent provides no
dependencies by itself. Let’s edit our pom.xml and add the spring-boot-starter-web dependency just below the parent section:

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
</dependencies>

If you run mvn dependency:tree again, you will see that there are now a number of additional dependencies, including the Tomcat web server and Spring Boot itself.

11.3 Writing the code
To finish our application we need to create a single Java file. Maven will compile sources from src/main/java by default so you need to create that folder structure,
then add a file named src/main/java/Example.java :

import org.springframework.boot.*;
import org.springframework.boot.autoconfigure.*;
import org.springframework.stereotype.*;
import org.springframework.web.bind.annotation.*;

@RestController
@EnableAutoConfiguration
public class Example {

@RequestMapping("/")
 String home() {

return "Hello World!";
 }

public static void main(String[] args) throws Exception {
 SpringApplication.run(Example.class, args);
 }

}

Although there isn’t much code here, quite a lot is going on. Let’s step through the important parts.

11.3.1 The @RestController and @RequestMapping annotations

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

16 of 180 05/12/2016 20:33

The first annotation on our Example class is @RestController . This is known as a stereotype annotation. It provides hints for people reading the code, and for
Spring, that the class plays a specific role. In this case, our class is a web @Controller so Spring will consider it when handling incoming web requests.

The @RequestMapping annotation provides “routing” information. It is telling Spring that any HTTP request with the path “/” should be mapped to the home method.
The @RestController annotation tells Spring to render the resulting string directly back to the caller.

The @RestController and @RequestMapping annotations are Spring MVC annotations (they are not specific to Spring Boot). See the MVC section
in the Spring Reference Documentation for more details.

11.3.2 The @EnableAutoConfiguration annotation

The second class-level annotation is @EnableAutoConfiguration . This annotation tells Spring Boot to “guess” how you will want to configure Spring, based on the
jar dependencies that you have added. Since spring-boot-starter-web added Tomcat and Spring MVC, the auto-configuration will assume that you are developing
a web application and setup Spring accordingly.

Starters and Auto-Configuration

Auto-configuration is designed to work well with “Starters”, but the two concepts are not directly tied. You are free to pick-and-choose jar dependencies outside of
the starters and Spring Boot will still do its best to auto-configure your application.

11.3.3 The “main” method

The final part of our application is the main method. This is just a standard method that follows the Java convention for an application entry point. Our main method
delegates to Spring Boot’s SpringApplication class by calling run . SpringApplication will bootstrap our application, starting Spring which will in turn start the
auto-configured Tomcat web server. We need to pass Example.class as an argument to the run method to tell SpringApplication which is the primary Spring
component. The args array is also passed through to expose any command-line arguments.

11.4 Running the example
At this point our application should work. Since we have used the spring-boot-starter-parent POM we have a useful run goal that we can use to start the
application. Type mvn spring-boot:run from the root project directory to start the application:

$ mvn spring-boot:run

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.0.BUILD-SNAPSHOT)
....... . . .
....... . . . (log output here)
....... . . .
........ Started Example in 2.222 seconds (JVM running for 6.514)

If you open a web browser to localhost:8080 you should see the following output:

Hello World!

To gracefully exit the application hit ctrl-c .

11.5 Creating an executable jar
Let’s finish our example by creating a completely self-contained executable jar file that we could run in production. Executable jars (sometimes called “fat jars”) are
archives containing your compiled classes along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves contained within a jar). This can be problematic if you are looking to
distribute a self-contained application.

To solve this problem, many developers use “uber” jars. An uber jar simply packages all classes, from all jars, into a single archive. The problem with this approach
is that it becomes hard to see which libraries you are actually using in your application. It can also be problematic if the same filename is used (but with different
content) in multiple jars.

Spring Boot takes a different approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spring-boot-maven-plugin to our pom.xml . Insert the following lines just below the dependencies section:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

17 of 180 05/12/2016 20:33

The spring-boot-starter-parent POM includes <executions> configuration to bind the repackage goal. If you are not using the parent POM
you will need to declare this configuration yourself. See the plugin documentation for details.

Save your pom.xml and run mvn package from the command line:

$ mvn package

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building myproject 0.0.1-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---
[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-0.0.1-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:2.0.0.BUILD-SNAPSHOT:repackage (default) @ myproject ---
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

If you look in the target directory you should see myproject-0.0.1-SNAPSHOT.jar . The file should be around 10 MB in size. If you want to peek inside, you can
use jar tvf :

$ jar tvf target/myproject-0.0.1-SNAPSHOT.jar

You should also see a much smaller file named myproject-0.0.1-SNAPSHOT.jar.original in the target directory. This is the original jar file that Maven
created before it was repackaged by Spring Boot.

To run that application, use the java -jar command:

$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.0.BUILD-SNAPSHOT)
....... . . .
....... . . . (log output here)
....... . . .
........ Started Example in 2.536 seconds (JVM running for 2.864)

As before, to gracefully exit the application hit ctrl-c .

12. What to read next
Hopefully this section has provided you with some of the Spring Boot basics, and got you on your way to writing your own applications. If you’re a task-oriented type of
developer you might want to jump over to spring.io and check out some of the getting started guides that solve specific “How do I do that with Spring” problems; we also
have Spring Boot-specific How-to reference documentation.

The Spring Boot repository has also a bunch of samples you can run. The samples are independent of the rest of the code (that is you don’t need to build the rest to run
or use the samples).

Otherwise, the next logical step is to read Part III, “Using Spring Boot”. If you’re really impatient, you could also jump ahead and read about Spring Boot features.

Part III. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as build systems, auto-configuration and how to run your applications. We
also cover some Spring Boot best practices. Although there is nothing particularly special about Spring Boot (it is just another library that you can consume), there are a
few recommendations that, when followed, will make your development process just a little easier.

If you’re just starting out with Spring Boot, you should probably read the Getting Started guide before diving into this section.

13. Build systems
It is strongly recommended that you choose a build system that supports dependency management, and one that can consume artifacts published to the “Maven Central”
repository. We would recommend that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant for example), but they will not
be particularly well supported.

13.1 Dependency management
Each release of Spring Boot provides a curated list of dependencies it supports. In practice, you do not need to provide a version for any of these dependencies in your
build configuration as Spring Boot is managing that for you. When you upgrade Spring Boot itself, these dependencies will be upgraded as well in a consistent way.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

18 of 180 05/12/2016 20:33

You can still specify a version and override Spring Boot’s recommendations if you feel that’s necessary.

The curated list contains all the spring modules that you can use with Spring Boot as well as a refined list of third party libraries. The list is available as a standard Bills of
Materials (spring-boot-dependencies) and additional dedicated support for Maven and Gradle are available as well.

Each release of Spring Boot is associated with a base version of the Spring Framework so we highly recommend you to not specify its version on your
own.

13.2 Maven
Maven users can inherit from the spring-boot-starter-parent project to obtain sensible defaults. The parent project provides the following features:

Java 1.6 as the default compiler level.
UTF-8 source encoding.
A Dependency Management section, allowing you to omit <version> tags for common dependencies, inherited from the spring-boot-dependencies POM.
Sensible resource filtering.
Sensible plugin configuration (exec plugin, surefire, Git commit ID, shade).
Sensible resource filtering for application.properties and application.yml including profile-specific files (e.g. application-foo.properties and
application-foo.yml)

On the last point: since the default config files accept Spring style placeholders (${…}) the Maven filtering is changed to use @..@ placeholders (you can override that
with a Maven property resource.delimiter).

13.2.1 Inheriting the starter parent

To configure your project to inherit from the spring-boot-starter-parent simply set the parent :

<!-- Inherit defaults from Spring Boot -->
<parent>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>

</parent>

You should only need to specify the Spring Boot version number on this dependency. If you import additional starters, you can safely omit the version
number.

With that setup, you can also override individual dependencies by overriding a property in your own project. For instance, to upgrade to another Spring Data release train
you’d add the following to your pom.xml .

<properties>
<spring-data-releasetrain.version>Fowler-SR2</spring-data-releasetrain.version>

</properties>

Check the spring-boot-dependencies pom for a list of supported properties.

13.2.2 Using Spring Boot without the parent POM

Not everyone likes inheriting from the spring-boot-starter-parent POM. You may have your own corporate standard parent that you need to use, or you may just
prefer to explicitly declare all your Maven configuration.

If you don’t want to use the spring-boot-starter-parent , you can still keep the benefit of the dependency management (but not the plugin management) by using
a scope=import dependency:

<dependencyManagement>
<dependencies>

<dependency>
<!-- Import dependency management from Spring Boot -->
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>

That setup does not allow you to override individual dependencies using a property as explained above. To achieve the same result, you’d need to add an entry in the
dependencyManagement of your project before the spring-boot-dependencies entry. For instance, to upgrade to another Spring Data release train you’d add
the following to your pom.xml .

<dependencyManagement>
<dependencies>

<!-- Override Spring Data release train provided by Spring Boot -->
<dependency>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

19 of 180 05/12/2016 20:33

<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>Fowler-SR2</version>
<scope>import</scope>
<type>pom</type>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>

In the example above, we specify a BOM but any dependency type can be overridden that way.

13.2.3 Changing the Java version

The spring-boot-starter-parent chooses fairly conservative Java compatibility. If you want to follow our recommendation and use a later Java version you can
add a java.version property:

<properties>
<java.version>1.8</java.version>

</properties>

13.2.4 Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin to your <plugins> section if you want to use it:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

If you use the Spring Boot starter parent pom, you only need to add the plugin, there is no need for to configure it unless you want to change the settings
defined in the parent.

13.3 Gradle
Gradle users can directly import ‘starters’ in their dependencies section. Unlike Maven, there is no “super parent” to import to share some configuration.

repositories {
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:2.0.0.BUILD-SNAPSHOT")
}

The spring-boot-gradle-plugin is also available and provides tasks to create executable jars and run projects from source. It also provides dependency
management that, among other capabilities, allows you to omit the version number for any dependencies that are managed by Spring Boot:

buildscript {
 repositories {
 jcenter()
 maven { url 'http://repo.spring.io/snapshot' }
 maven { url 'http://repo.spring.io/milestone' }
 }
 dependencies {
 classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.0.0.BUILD-SNAPSHOT'
 }
}

apply plugin: 'java'
apply plugin: 'org.springframework.boot'

repositories {
 jcenter()
 maven { url 'http://repo.spring.io/snapshot' }
 maven { url 'http://repo.spring.io/milestone' }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

20 of 180 05/12/2016 20:33

}

13.4 Ant
It is possible to build a Spring Boot project using Apache Ant+Ivy. The spring-boot-antlib “AntLib” module is also available to help Ant create executable jars.

To declare dependencies a typical ivy.xml file will look something like this:

<ivy-module version="2.0">
<info organisation="org.springframework.boot" module="spring-boot-sample-ant" />
<configurations>

<conf name="compile" description="everything needed to compile this module" />
<conf name="runtime" extends="compile" description="everything needed to run this module" />

</configurations>
<dependencies>

<dependency org="org.springframework.boot" name="spring-boot-starter"
rev="${spring-boot.version}" conf="compile" />

</dependencies>
</ivy-module>

A typical build.xml will look like this:

<project
xmlns:ivy="antlib:org.apache.ivy.ant"
xmlns:spring-boot="antlib:org.springframework.boot.ant"
name="myapp" default="build">

<property name="spring-boot.version" value="1.3.0.BUILD-SNAPSHOT" />

<target name="resolve" description="--> retrieve dependencies with ivy">
<ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />

</target>

<target name="classpaths" depends="resolve">
<path id="compile.classpath">

<fileset dir="lib/compile" includes="*.jar" />
</path>

</target>

<target name="init" depends="classpaths">
<mkdir dir="build/classes" />

</target>

<target name="compile" depends="init" description="compile">
<javac srcdir="src/main/java" destdir="build/classes" classpathref="compile.classpath" />

</target>

<target name="build" depends="compile">
<spring-boot:exejar destfile="build/myapp.jar" classes="build/classes">

<spring-boot:lib>
<fileset dir="lib/runtime" />

</spring-boot:lib>
</spring-boot:exejar>

</target>
</project>

See the Section 82.10, “Build an executable archive from Ant without using spring-boot-antlib” “How-to” if you don’t want to use the
spring-boot-antlib module.

13.5 Starters
Starters are a set of convenient dependency descriptors that you can include in your application. You get a one-stop-shop for all the Spring and related technology that
you need, without having to hunt through sample code and copy paste loads of dependency descriptors. For example, if you want to get started using Spring and JPA for
database access, just include the spring-boot-starter-data-jpa dependency in your project, and you are good to go.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and with a consistent, supported set of managed transitive
dependencies.

What’s in a name

All official starters follow a similar naming pattern; spring-boot-starter-* , where * is a particular type of application. This naming structure is intended to
help when you need to find a starter. The Maven integration in many IDEs allow you to search dependencies by name. For example, with the appropriate Eclipse or
STS plugin installed, you can simply hit ctrl-space in the POM editor and type “spring-boot-starter” for a complete list.

As explained in the Creating your own starter section, third party starters should not start with spring-boot as it is reserved for official Spring Boot artifacts. A
third-party starter for acme will be typically named acme-spring-boot-starter .

The following application starters are provided by Spring Boot under the org.springframework.boot group:

Table 13.1. Spring Boot application starters

Name Description Pom

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

21 of 180 05/12/2016 20:33

Name Description Pom

spring-boot-starter-thymeleaf Starter for building MVC web applications using Thymeleaf views Pom

spring-boot-starter-data-couchbase Starter for using Couchbase document-oriented database and Spring Data Couchbase Pom

spring-boot-starter-artemis Starter for JMS messaging using Apache Artemis Pom

spring-boot-starter-web-services Starter for using Spring Web Services Pom

spring-boot-starter-mail Starter for using Java Mail and Spring Framework’s email sending support Pom

spring-boot-starter-data-redis Starter for using Redis key-value data store with Spring Data Redis and the Jedis client Pom

spring-boot-starter-web Starter for building web, including RESTful, applications using Spring MVC. Uses Tomcat as the
default embedded container

Pom

spring-boot-starter-activemq Starter for JMS messaging using Apache ActiveMQ Pom

spring-boot-starter-data-elasticsearch Starter for using Elasticsearch search and analytics engine and Spring Data Elasticsearch Pom

spring-boot-starter-integration Starter for using Spring Integration Pom

spring-boot-starter-test Starter for testing Spring Boot applications with libraries including JUnit, Hamcrest and Mockito Pom

spring-boot-starter-jdbc Starter for using JDBC with the Tomcat JDBC connection pool Pom

spring-boot-starter-mobile Starter for building web applications using Spring Mobile Pom

spring-boot-starter-validation Starter for using Java Bean Validation with Hibernate Validator Pom

spring-boot-starter-hateoas Starter for building hypermedia-based RESTful web application with Spring MVC and Spring
HATEOAS

Pom

spring-boot-starter-jersey Starter for building RESTful web applications using JAX-RS and Jersey. An alternative to
spring-boot-starter-web

Pom

spring-boot-starter-data-neo4j Starter for using Neo4j graph database and Spring Data Neo4j Pom

spring-boot-starter-websocket Starter for building WebSocket applications using Spring Framework’s WebSocket support Pom

spring-boot-starter-aop Starter for aspect-oriented programming with Spring AOP and AspectJ Pom

spring-boot-starter-amqp Starter for using Spring AMQP and Rabbit MQ Pom

spring-boot-starter-data-cassandra Starter for using Cassandra distributed database and Spring Data Cassandra Pom

spring-boot-starter-social-facebook Starter for using Spring Social Facebook Pom

spring-boot-starter-jta-atomikos Starter for JTA transactions using Atomikos Pom

spring-boot-starter-security Starter for using Spring Security Pom

spring-boot-starter-mustache Starter for building MVC web applications using Mustache views Pom

spring-boot-starter-data-jpa Starter for using Spring Data JPA with Hibernate Pom

spring-boot-starter Core starter, including auto-configuration support, logging and YAML Pom

spring-boot-starter-groovy-templates Starter for building MVC web applications using Groovy Templates views Pom

spring-boot-starter-freemarker Starter for building MVC web applications using FreeMarker views Pom

spring-boot-starter-batch Starter for using Spring Batch Pom

spring-boot-starter-social-linkedin Stater for using Spring Social LinkedIn Pom

spring-boot-starter-cache Starter for using Spring Framework’s caching support Pom

spring-boot-starter-data-solr Starter for using the Apache Solr search platform with Spring Data Solr Pom

spring-boot-starter-data-mongodb Starter for using MongoDB document-oriented database and Spring Data MongoDB Pom

spring-boot-starter-jooq Starter for using jOOQ to access SQL databases. An alternative to
spring-boot-starter-data-jpa or spring-boot-starter-jdbc

Pom

spring-boot-starter-jta-narayana Spring Boot Narayana JTA Starter Pom

spring-boot-starter-cloud-connectors Starter for using Spring Cloud Connectors which simplifies connecting to services in cloud
platforms like Cloud Foundry and Heroku

Pom

spring-boot-starter-jta-bitronix Starter for JTA transactions using Bitronix Pom

spring-boot-starter-social-twitter Starter for using Spring Social Twitter Pom

spring-boot-starter-data-rest Starter for exposing Spring Data repositories over REST using Spring Data REST Pom

In addition to the application starters, the following starters can be used to add production ready features:

Table 13.2. Spring Boot production starters

Name Description Pom

spring-boot-starter-actuator Starter for using Spring Boot’s Actuator which provides production ready features to help you monitor and
manage your application

Pom

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

22 of 180 05/12/2016 20:33

Finally, Spring Boot also includes some starters that can be used if you want to exclude or swap specific technical facets:

Table 13.3. Spring Boot technical starters

Name Description Pom

spring-boot-starter-undertow Starter for using Undertow as the embedded servlet container. An alternative to
spring-boot-starter-tomcat

Pom

spring-boot-starter-jetty Starter for using Jetty as the embedded servlet container. An alternative to
spring-boot-starter-tomcat

Pom

spring-boot-starter-logging Starter for logging using Logback. Default logging starter Pom

spring-boot-starter-tomcat Starter for using Tomcat as the embedded servlet container. Default servlet container starter used by
spring-boot-starter-web

Pom

spring-boot-starter-log4j2 Starter for using Log4j2 for logging. An alternative to spring-boot-starter-logging Pom

For a list of additional community contributed starters, see the README file in the spring-boot-starters module on GitHub.

14. Structuring your code
Spring Boot does not require any specific code layout to work, however, there are some best practices that help.

14.1 Using the “default” package
When a class doesn’t include a package declaration it is considered to be in the “default package”. The use of the “default package” is generally discouraged, and
should be avoided. It can cause particular problems for Spring Boot applications that use @ComponentScan , @EntityScan or @SpringBootApplication
annotations, since every class from every jar, will be read.

We recommend that you follow Java’s recommended package naming conventions and use a reversed domain name (for example,
com.example.project).

14.2 Locating the main application class
We generally recommend that you locate your main application class in a root package above other classes. The @EnableAutoConfiguration annotation is often
placed on your main class, and it implicitly defines a base “search package” for certain items. For example, if you are writing a JPA application, the package of the
@EnableAutoConfiguration annotated class will be used to search for @Entity items.

Using a root package also allows the @ComponentScan annotation to be used without needing to specify a basePackage attribute. You can also use the
@SpringBootApplication annotation if your main class is in the root package.

Here is a typical layout:

com
 +- example
 +- myproject
 +- Application.java
 |
 +- domain
 | +- Customer.java
 | +- CustomerRepository.java
 |
 +- service
 | +- CustomerService.java
 |
 +- web
 +- CustomerController.java

The Application.java file would declare the main method, along with the basic @Configuration .

package com.example.myproject;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application {

public static void main(String[] args) {
 SpringApplication.run(Application.class, args);

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

23 of 180 05/12/2016 20:33

 }

}

15. Configuration classes
Spring Boot favors Java-based configuration. Although it is possible to call SpringApplication.run() with an XML source, we generally recommend that your
primary source is a @Configuration class. Usually the class that defines the main method is also a good candidate as the primary @Configuration .

Many Spring configuration examples have been published on the Internet that use XML configuration. Always try to use the equivalent Java-based
configuration if possible. Searching for enable* annotations can be a good starting point.

15.1 Importing additional configuration classes
You don’t need to put all your @Configuration into a single class. The @Import annotation can be used to import additional configuration classes. Alternatively, you
can use @ComponentScan to automatically pick up all Spring components, including @Configuration classes.

15.2 Importing XML configuration
If you absolutely must use XML based configuration, we recommend that you still start with a @Configuration class. You can then use an additional
@ImportResource annotation to load XML configuration files.

16. Auto-configuration
Spring Boot auto-configuration attempts to automatically configure your Spring application based on the jar dependencies that you have added. For example, If HSQLDB
is on your classpath, and you have not manually configured any database connection beans, then we will auto-configure an in-memory database.

You need to opt-in to auto-configuration by adding the @EnableAutoConfiguration or @SpringBootApplication annotations to one of your
@Configuration classes.

You should only ever add one @EnableAutoConfiguration annotation. We generally recommend that you add it to your primary @Configuration
class.

16.1 Gradually replacing auto-configuration
Auto-configuration is noninvasive, at any point you can start to define your own configuration to replace specific parts of the auto-configuration. For example, if you add
your own DataSource bean, the default embedded database support will back away.

If you need to find out what auto-configuration is currently being applied, and why, start your application with the --debug switch. This will enable debug logs for a
selection of core loggers and log an auto-configuration report to the console.

16.2 Disabling specific auto-configuration
If you find that specific auto-configure classes are being applied that you don’t want, you can use the exclude attribute of @EnableAutoConfiguration to disable
them.

import org.springframework.boot.autoconfigure.*;
import org.springframework.boot.autoconfigure.jdbc.*;
import org.springframework.context.annotation.*;

@Configuration
@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
public class MyConfiguration {
}

If the class is not on the classpath, you can use the excludeName attribute of the annotation and specify the fully qualified name instead. Finally, you can also control
the list of auto-configuration classes to exclude via the spring.autoconfigure.exclude property.

You can define exclusions both at the annotation level and using the property.

17. Spring Beans and dependency injection
You are free to use any of the standard Spring Framework techniques to define your beans and their injected dependencies. For simplicity, we often find that using
@ComponentScan to find your beans, in combination with @Autowired constructor injection works well.

If you structure your code as suggested above (locating your application class in a root package), you can add @ComponentScan without any arguments. All of your
application components (@Component , @Service , @Repository , @Controller etc.) will be automatically registered as Spring Beans.

Here is an example @Service Bean that uses constructor injection to obtain a required RiskAssessor bean.

package com.example.service;

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

24 of 180 05/12/2016 20:33

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class DatabaseAccountService implements AccountService {

private final RiskAssessor riskAssessor;

@Autowired
public DatabaseAccountService(RiskAssessor riskAssessor) {

this.riskAssessor = riskAssessor;
 }

// ...

}

Notice how using constructor injection allows the riskAssessor field to be marked as final , indicating that it cannot be subsequently changed.

18. Using the @SpringBootApplication annotation
Many Spring Boot developers always have their main class annotated with @Configuration , @EnableAutoConfiguration and @ComponentScan . Since these
annotations are so frequently used together (especially if you follow the best practices above), Spring Boot provides a convenient @SpringBootApplication
alternative.

The @SpringBootApplication annotation is equivalent to using @Configuration , @EnableAutoConfiguration and @ComponentScan with their default
attributes:

package com.example.myproject;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication // same as @Configuration @EnableAutoConfiguration @ComponentScan
public class Application {

public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

@SpringBootApplication also provides aliases to customize the attributes of @EnableAutoConfiguration and @ComponentScan .

19. Running your application
One of the biggest advantages of packaging your application as jar and using an embedded HTTP server is that you can run your application as you would any other.
Debugging Spring Boot applications is also easy; you don’t need any special IDE plugins or extensions.

This section only covers jar based packaging, If you choose to package your application as a war file you should refer to your server and IDE
documentation.

19.1 Running from an IDE
You can run a Spring Boot application from your IDE as a simple Java application, however, first you will need to import your project. Import steps will vary depending on
your IDE and build system. Most IDEs can import Maven projects directly, for example Eclipse users can select Import… → Existing Maven Projects from the
File menu.

If you can’t directly import your project into your IDE, you may be able to generate IDE metadata using a build plugin. Maven includes plugins for Eclipse and IDEA;
Gradle offers plugins for various IDEs.

If you accidentally run a web application twice you will see a “Port already in use” error. STS users can use the Relaunch button rather than Run to
ensure that any existing instance is closed.

19.2 Running as a packaged application
If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can run your application using java -jar . For example:

$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

It is also possible to run a packaged application with remote debugging support enabled. This allows you to attach a debugger to your packaged application:

$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \
 -jar target/myproject-0.0.1-SNAPSHOT.jar

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

25 of 180 05/12/2016 20:33

19.3 Using the Maven plugin
The Spring Boot Maven plugin includes a run goal which can be used to quickly compile and run your application. Applications run in an exploded form just like in your
IDE.

$ mvn spring-boot:run

You might also want to use the useful operating system environment variable:

$ export MAVEN_OPTS=-Xmx1024m -XX:MaxPermSize=128M

19.4 Using the Gradle plugin
The Spring Boot Gradle plugin also includes a bootRun task which can be used to run your application in an exploded form. The bootRun task is added whenever
you import the spring-boot-gradle-plugin :

$ gradle bootRun

You might also want to use this useful operating system environment variable:

$ export JAVA_OPTS=-Xmx1024m -XX:MaxPermSize=128M

19.5 Hot swapping
Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the box. JVM hot swapping is somewhat limited with the bytecode
that it can replace, for a more complete solution JRebel or the Spring Loaded project can be used. The spring-boot-devtools module also includes support for
quick application restarts.

See the Chapter 20, Developer tools section below and the Hot swapping “How-to” for details.

20. Developer tools
Spring Boot includes an additional set of tools that can make the application development experience a little more pleasant. The spring-boot-devtools module can
be included in any project to provide additional development-time features. To include devtools support, simply add the module dependency to your build:

Maven.

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional>

</dependency>
</dependencies>

Gradle.

dependencies {
 compile("org.springframework.boot:spring-boot-devtools")
}

Developer tools are automatically disabled when running a fully packaged application. If your application is launched using java -jar or if it’s started
using a special classloader, then it is considered a “production application”. Flagging the dependency as optional is a best practice that prevents devtools
from being transitively applied to other modules using your project. Gradle does not support optional dependencies out-of-the-box so you may want to
have a look to the propdeps-plugin in the meantime.

repackaged archives do not contain devtools by default. If you want to use certain remote devtools feature, you’ll need to disable the excludeDevtools
build property to include it. The property is supported with both the Maven and Gradle plugins.

20.1 Property defaults
Several of the libraries supported by Spring Boot use caches to improve performance. For example, Thymeleaf will cache templates to save repeatedly parsing XML
source files. Whilst caching is very beneficial in production, it can be counter productive during development. If you make a change to a template file in your IDE, you’ll
likely want to immediately see the result.

Cache options are usually configured by settings in your application.properties file. For example, Thymeleaf offers the spring.thymeleaf.cache property.
Rather than needing to set these properties manually, the spring-boot-devtools module will automatically apply sensible development-time configuration.

For a complete list of the properties that are applied see DevToolsPropertyDefaultsPostProcessor.

20.2 Automatic restart
Applications that use spring-boot-devtools will automatically restart whenever files on the classpath change. This can be a useful feature when working in an IDE

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

26 of 180 05/12/2016 20:33

as it gives a very fast feedback loop for code changes. By default, any entry on the classpath that points to a folder will be monitored for changes. Note that certain
resources such as static assets and view templates do not need to restart the application.

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the classpath. The way in which you cause the classpath to be updated
depends on the IDE that you are using. In Eclipse, saving a modified file will cause the classpath to be updated and trigger a restart. In IntelliJ IDEA, building the
project (Build → Make Project) will have the same effect.

You can also start your application via the supported build plugins (i.e. Maven and Gradle) as long as forking is enabled since DevTools need an isolated
application classloader to operate properly. Gradle and Maven do that by default when they detect DevTools on the classpath.

Automatic restart works very well when used with LiveReload. See below for details. If you use JRebel automatic restarts will be disabled in favor of
dynamic class reloading. Other devtools features (such as LiveReload and property overrides) can still be used.

DevTools relies on the application context’s shutdown hook to close it during a restart. It will not work correctly if you have disabled the shutdown hook (
SpringApplication.setRegisterShutdownHook(false)).

When deciding if an entry on the classpath should trigger a restart when it changes, DevTools automatically ignores projects named spring-boot ,
spring-boot-devtools , spring-boot-autoconfigure , spring-boot-actuator , and spring-boot-starter .

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that don’t change (for example, those from third-party jars) are loaded
into a base classloader. Classes that you’re actively developing are loaded into a restart classloader. When the application is restarted, the restart classloader is
thrown away and a new one is created. This approach means that application restarts are typically much faster than “cold starts” since the base classloader is
already available and populated.

If you find that restarts aren’t quick enough for your applications, or you encounter classloading issues, you could consider reloading technologies such as JRebel
from ZeroTurnaround. These work by rewriting classes as they are loaded to make them more amenable to reloading. Spring Loaded provides another option,
however it doesn’t support as many frameworks and it isn’t commercially supported.

20.2.1 Excluding resources

Certain resources don’t necessarily need to trigger a restart when they are changed. For example, Thymeleaf templates can just be edited in-place. By default changing
resources in /META-INF/maven , /META-INF/resources , /resources , /static , /public or /templates will not trigger a restart but will trigger a live
reload. If you want to customize these exclusions you can use the spring.devtools.restart.exclude property. For example, to exclude only /static and
/public you would set the following:

spring.devtools.restart.exclude=static/**,public/**

if you want to keep those defaults and add additional exclusions, use the spring.devtools.restart.additional-exclude property instead.

20.2.2 Watching additional paths

You may want your application to be restarted or reloaded when you make changes to files that are not on the classpath. To do so, use the
spring.devtools.restart.additional-paths property to configure additional paths to watch for changes. You can use the
spring.devtools.restart.exclude property described above to control whether changes beneath the additional paths will trigger a full restart or just a live reload.

20.2.3 Disabling restart

If you don’t want to use the restart feature you can disable it using the spring.devtools.restart.enabled property. In most cases you can set this in your
application.properties (this will still initialize the restart classloader but it won’t watch for file changes).

If you need to completely disable restart support, for example, because it doesn’t work with a specific library, you need to set a System property before calling
SpringApplication.run(…) . For example:

public static void main(String[] args) {
 System.setProperty("spring.devtools.restart.enabled", "false");
 SpringApplication.run(MyApp.class, args);
}

20.2.4 Using a trigger file

If you work with an IDE that continuously compiles changed files, you might prefer to trigger restarts only at specific times. To do this you can use a “trigger file”, which is
a special file that must be modified when you want to actually trigger a restart check. Changing the file only triggers the check and the restart will only occur if Devtools
has detected it has to do something. The trigger file could be updated manually, or via an IDE plugin.

To use a trigger file use the spring.devtools.restart.trigger-file property.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

27 of 180 05/12/2016 20:33

You might want to set spring.devtools.restart.trigger-file as a global setting so that all your projects behave in the same way.

20.2.5 Customizing the restart classloader

As described in the Restart vs Reload section above, restart functionality is implemented by using two classloaders. For most applications this approach works well,
however, sometimes it can cause classloading issues.

By default, any open project in your IDE will be loaded using the “restart” classloader, and any regular .jar file will be loaded using the “base” classloader. If you work
on a multi-module project, and not each module is imported into your IDE, you may need to customize things. To do this you can create a
META-INF/spring-devtools.properties file.

The spring-devtools.properties file can contain restart.exclude. and restart.include. prefixed properties. The include elements are items that
should be pulled up into the “restart” classloader, and the exclude elements are items that should be pushed down into the “base” classloader. The value of the
property is a regex pattern that will be applied to the classpath.

For example:

restart.exclude.companycommonlibs=/mycorp-common-[\\w-]+\.jar
restart.include.projectcommon=/mycorp-myproj-[\\w-]+\.jar

All property keys must be unique. As long as a property starts with restart.include. or restart.exclude. it will be considered.

All META-INF/spring-devtools.properties from the classpath will be loaded. You can package files inside your project, or in the libraries that the
project consumes.

20.2.6 Known limitations

Restart functionality does not work well with objects that are deserialized using a standard ObjectInputStream . If you need to deserialize data, you may need to use
Spring’s ConfigurableObjectInputStream in combination with Thread.currentThread().getContextClassLoader() .

Unfortunately, several third-party libraries deserialize without considering the context classloader. If you find such a problem, you will need to request a fix with the original
authors.

20.3 LiveReload
The spring-boot-devtools module includes an embedded LiveReload server that can be used to trigger a browser refresh when a resource is changed. LiveReload
browser extensions are freely available for Chrome, Firefox and Safari from livereload.com.

If you don’t want to start the LiveReload server when your application runs you can set the spring.devtools.livereload.enabled property to false .

You can only run one LiveReload server at a time. Before starting your application, ensure that no other LiveReload servers are running. If you start multiple
applications from your IDE, only the first will have LiveReload support.

20.4 Global settings
You can configure global devtools settings by adding a file named .spring-boot-devtools.properties to your $HOME folder (note that the filename starts with
“.”). Any properties added to this file will apply to all Spring Boot applications on your machine that use devtools. For example, to configure restart to always use a trigger
file, you would add the following:

~/.spring-boot-devtools.properties.

spring.devtools.reload.trigger-file=.reloadtrigger

20.5 Remote applications
The Spring Boot developer tools are not just limited to local development. You can also use several features when running applications remotely. Remote support is
opt-in, to enable it you need to make sure that devtools is included in the repackaged archive:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

<excludeDevtools>false</excludeDevtools>
</configuration>

</plugin>
</plugins>

</build>

Then you need to set a spring.devtools.remote.secret property, for example:

spring.devtools.remote.secret=mysecret

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

28 of 180 05/12/2016 20:33

Enabling spring-boot-devtools on a remote application is a security risk. You should never enable support on a production deployment.

Remote devtools support is provided in two parts; there is a server side endpoint that accepts connections, and a client application that you run in your IDE. The server
component is automatically enabled when the spring.devtools.remote.secret property is set. The client component must be launched manually.

20.5.1 Running the remote client application

The remote client application is designed to be run from within you IDE. You need to run org.springframework.boot.devtools.RemoteSpringApplication
using the same classpath as the remote project that you’re connecting to. The non-option argument passed to the application should be the remote URL that you are
connecting to.

For example, if you are using Eclipse or STS, and you have a project named my-app that you’ve deployed to Cloud Foundry, you would do the following:

Select Run Configurations… from the Run menu.
Create a new Java Application “launch configuration”.
Browse for the my-app project.
Use org.springframework.boot.devtools.RemoteSpringApplication as the main class.
Add https://myapp.cfapps.io to the Program arguments (or whatever your remote URL is).

A running remote client will look like this:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ ___ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | | _ ___ _ __ ___| |_ ___ \ \ \ \
 \\/ ___)| |_)| | | | | || (_| []::::::[] / -_) ' \/ _ \ _/ -_)))))
 ' |____| .__|_| |_|_| |___, | |_|____|_|_|____/_____|/ / / /
 =========|_|==============|___/===================================/_/_/_/
 :: Spring Boot Remote :: 2.0.0.BUILD-SNAPSHOT

2015-06-10 18:25:06.632 INFO 14938 --- [main] o.s.b.devtools.RemoteSpringApplication : Starting RemoteSpringApplication on pwmbp with PID 1
2015-06-10 18:25:06.671 INFO 14938 --- [main] s.c.a.AnnotationConfigApplicationContext : Refreshing org.springframework.context.annotation.An
2015-06-10 18:25:07.043 WARN 14938 --- [main] o.s.b.d.r.c.RemoteClientConfiguration : The connection to http://localhost:8080 is insecure.
2015-06-10 18:25:07.074 INFO 14938 --- [main] o.s.b.d.a.OptionalLiveReloadServer : LiveReload server is running on port 35729
2015-06-10 18:25:07.130 INFO 14938 --- [main] o.s.b.devtools.RemoteSpringApplication : Started RemoteSpringApplication in 0.74 seconds (JVM

Because the remote client is using the same classpath as the real application it can directly read application properties. This is how the
spring.devtools.remote.secret property is read and passed to the server for authentication.

It’s always advisable to use https:// as the connection protocol so that traffic is encrypted and passwords cannot be intercepted.

If you need to use a proxy to access the remote application, configure the spring.devtools.remote.proxy.host and
spring.devtools.remote.proxy.port properties.

20.5.2 Remote update

The remote client will monitor your application classpath for changes in the same way as the local restart. Any updated resource will be pushed to the remote application
and (if required) trigger a restart. This can be quite helpful if you are iterating on a feature that uses a cloud service that you don’t have locally. Generally remote updates
and restarts are much quicker than a full rebuild and deploy cycle.

Files are only monitored when the remote client is running. If you change a file before starting the remote client, it won’t be pushed to the remote server.

20.5.3 Remote debug tunnel

Java remote debugging is useful when diagnosing issues on a remote application. Unfortunately, it’s not always possible to enable remote debugging when your
application is deployed outside of your data center. Remote debugging can also be tricky to setup if you are using a container based technology such as Docker.

To help work around these limitations, devtools supports tunneling of remote debug traffic over HTTP. The remote client provides a local server on port 8000 that you
can attach a remote debugger to. Once a connection is established, debug traffic is sent over HTTP to the remote application. You can use the
spring.devtools.remote.debug.local-port property if you want to use a different port.

You’ll need to ensure that your remote application is started with remote debugging enabled. Often this can be achieved by configuring JAVA_OPTS . For example, with
Cloud Foundry you can add the following to your manifest.yml :

 env:
 JAVA_OPTS: "-Xdebug -Xrunjdwp:server=y,transport=dt_socket,suspend=n"

Notice that you don’t need to pass an address=NNNN option to -Xrunjdwp . If omitted Java will simply pick a random free port.

Debugging a remote service over the Internet can be slow and you might need to increase timeouts in your IDE. For example, in Eclipse you can select
Java → Debug from Preferences… and change the Debugger timeout (ms) to a more suitable value (60000 works well in most situations).

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

29 of 180 05/12/2016 20:33

21. Packaging your application for production
Executable jars can be used for production deployment. As they are self-contained, they are also ideally suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing and metric REST or JMX end-points; consider adding spring-boot-actuator . See Part V,

“Spring Boot Actuator: Production-ready features” for details.

22. What to read next
You should now have good understanding of how you can use Spring Boot along with some best practices that you should follow. You can now go on to learn about
specific Spring Boot features in depth, or you could skip ahead and read about the “production ready” aspects of Spring Boot.

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you will want to use and customize. If you haven’t already, you might
want to read the Part II, “Getting started” and Part III, “Using Spring Boot” sections so that you have a good grounding of the basics.

23. SpringApplication
The SpringApplication class provides a convenient way to bootstrap a Spring application that will be started from a main() method. In many situations you can
just delegate to the static SpringApplication.run method:

public static void main(String[] args) {
 SpringApplication.run(MySpringConfiguration.class, args);
}

When your application starts you should see something similar to the following:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: v2.0.0.BUILD-SNAPSHOT

2013-07-31 00:08:16.117 INFO 56603 --- [main] o.s.b.s.app.SampleApplication : Starting SampleApplication v0.1.0 on mycomputer with
2013-07-31 00:08:16.166 INFO 56603 --- [main] ationConfigEmbeddedWebApplicationContext : Refreshing org.springframework.boot.context.embedded
2014-03-04 13:09:54.912 INFO 41370 --- [main] .t.TomcatEmbeddedServletContainerFactory : Server initialized with port: 8080
2014-03-04 13:09:56.501 INFO 41370 --- [main] o.s.b.s.app.SampleApplication : Started SampleApplication in 2.992 seconds (JVM runn

By default INFO logging messages will be shown, including some relevant startup details such as the user that launched the application.

23.1 Startup failure
If your application fails to start, registered FailureAnalyzers get a chance to provide a dedicated error message and a concrete action to fix the problem. For
instance if you start a web application on port 8080 and that port is already in use, you should see something similar to the following:

APPLICATION FAILED TO START

Description:

Embedded servlet container failed to start. Port 8080 was already in use.

Action:

Identify and stop the process that's listening on port 8080 or configure this application to listen on another port.

Spring Boot provides numerous FailureAnalyzer implementations and you can add your own very easily.

If no failure analyzers are able to handle the exception, you can still display the full auto-configuration report to better understand what went wrong. To do so you need to
enable the debug property or enable DEBUG logging for
org.springframework.boot.autoconfigure.logging.AutoConfigurationReportLoggingInitializer .

For instance, if you are running your application using java -jar you can enable the debug property as follows:

$ java -jar myproject-0.0.1-SNAPSHOT.jar --debug

23.2 Customizing the Banner
The banner that is printed on start up can be changed by adding a banner.txt file to your classpath, or by setting banner.location to the location of such a file. If
the file has an unusual encoding you can set banner.charset (default is UTF-8). In addition to a text file, you can also add a banner.gif , banner.jpg or

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

30 of 180 05/12/2016 20:33

banner.png image file to your classpath, or set a banner.image.location property. Images will be converted into an ASCII art representation and printed above
any text banner.

Inside your banner.txt file you can use any of the following placeholders:

Table 23.1. Banner variables

Variable Description

${application.version} The version number of your application as declared in MANIFEST.MF . For example
Implementation-Version: 1.0 is printed as 1.0 .

${application.formatted-version} The version number of your application as declared in MANIFEST.MF formatted for
display (surrounded with brackets and prefixed with v). For example (v1.0) .

${spring-boot.version} The Spring Boot version that you are using. For example 2.0.0.BUILD-SNAPSHOT .

${spring-boot.formatted-version} The Spring Boot version that you are using formatted for display (surrounded with
brackets and prefixed with v). For example (v2.0.0.BUILD-SNAPSHOT) .

${Ansi.NAME} (or ${AnsiColor.NAME} ,
${AnsiBackground.NAME} , ${AnsiStyle.NAME})

Where NAME is the name of an ANSI escape code. See AnsiPropertySource for
details.

${application.title} The title of your application as declared in MANIFEST.MF . For example
Implementation-Title: MyApp is printed as MyApp .

The SpringApplication.setBanner(…) method can be used if you want to generate a banner programmatically. Use the
org.springframework.boot.Banner interface and implement your own printBanner() method.

You can also use the spring.main.banner-mode property to determine if the banner has to be printed on System.out (console), using the configured logger
(log) or not at all (off).

The printed banner will be registered as a singleton bean under the name springBootBanner .

YAML maps off to false so make sure to add quotes if you want to disable the banner in your application.

spring:
 main:
 banner-mode: "off"

23.3 Customizing SpringApplication
If the SpringApplication defaults aren’t to your taste you can instead create a local instance and customize it. For example, to turn off the banner you would write:

public static void main(String[] args) {
 SpringApplication app = new SpringApplication(MySpringConfiguration.class);
 app.setBannerMode(Banner.Mode.OFF);
 app.run(args);
}

The constructor arguments passed to SpringApplication are configuration sources for spring beans. In most cases these will be references to
@Configuration classes, but they could also be references to XML configuration or to packages that should be scanned.

It is also possible to configure the SpringApplication using an application.properties file. See Chapter 24, Externalized Configuration for details.

For a complete list of the configuration options, see the SpringApplication Javadoc.

23.4 Fluent builder API
If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/child relationship), or if you just prefer using a ‘fluent’ builder API, you can use
the SpringApplicationBuilder .

The SpringApplicationBuilder allows you to chain together multiple method calls, and includes parent and child methods that allow you to create a
hierarchy.

For example:

new SpringApplicationBuilder()
 .sources(Parent.class)
 .child(Application.class)
 .bannerMode(Banner.Mode.OFF)
 .run(args);

There are some restrictions when creating an ApplicationContext hierarchy, e.g. Web components must be contained within the child context, and

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

31 of 180 05/12/2016 20:33

the same Environment will be used for both parent and child contexts. See the SpringApplicationBuilder Javadoc for full details.

23.5 Application events and listeners
In addition to the usual Spring Framework events, such as ContextRefreshedEvent , a SpringApplication sends some additional application events.

Some events are actually triggered before the ApplicationContext is created so you cannot register a listener on those as a @Bean . You can register
them via the SpringApplication.addListeners(…) or SpringApplicationBuilder.listeners(…) methods.
If you want those listeners to be registered automatically regardless of the way the application is created you can add a META-INF/spring.factories
file to your project and reference your listener(s) using the org.springframework.context.ApplicationListener key.

org.springframework.context.ApplicationListener=com.example.project.MyListener

Application events are sent in the following order, as your application runs:

An ApplicationStartingEvent is sent at the start of a run, but before any processing except the registration of listeners and initializers.1.
An ApplicationEnvironmentPreparedEvent is sent when the Environment to be used in the context is known, but before the context is created.2.
An ApplicationPreparedEvent is sent just before the refresh is started, but after bean definitions have been loaded.3.
An ApplicationReadyEvent is sent after the refresh and any related callbacks have been processed to indicate the application is ready to service requests.4.
An ApplicationFailedEvent is sent if there is an exception on startup.5.

You often won’t need to use application events, but it can be handy to know that they exist. Internally, Spring Boot uses events to handle a variety of tasks.

23.6 Web environment
A SpringApplication will attempt to create the right type of ApplicationContext on your behalf. By default, an AnnotationConfigApplicationContext
or AnnotationConfigEmbeddedWebApplicationContext will be used, depending on whether you are developing a web application or not.

The algorithm used to determine a ‘web environment’ is fairly simplistic (based on the presence of a few classes). You can use
setWebEnvironment(boolean webEnvironment) if you need to override the default.

It is also possible to take complete control of the ApplicationContext type that will be used by calling setApplicationContextClass(…) .

It is often desirable to call setWebEnvironment(false) when using SpringApplication within a JUnit test.

23.7 Accessing application arguments
If you need to access the application arguments that were passed to SpringApplication.run(…) you can inject a
org.springframework.boot.ApplicationArguments bean. The ApplicationArguments interface provides access to both the raw String[] arguments
as well as parsed option and non-option arguments:

import org.springframework.boot.*
import org.springframework.beans.factory.annotation.*
import org.springframework.stereotype.*

@Component
public class MyBean {

@Autowired
public MyBean(ApplicationArguments args) {

boolean debug = args.containsOption("debug");
 List<String> files = args.getNonOptionArgs();

// if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]
 }

}

Spring Boot will also register a CommandLinePropertySource with the Spring Environment . This allows you to also inject single application
arguments using the @Value annotation.

23.8 Using the ApplicationRunner or CommandLineRunner
If you need to run some specific code once the SpringApplication has started, you can implement the ApplicationRunner or CommandLineRunner
interfaces. Both interfaces work in the same way and offer a single run method which will be called just before SpringApplication.run(…) completes.

The CommandLineRunner interfaces provides access to application arguments as a simple string array, whereas the ApplicationRunner uses the
ApplicationArguments interface discussed above.

import org.springframework.boot.*
import org.springframework.stereotype.*

@Component

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

32 of 180 05/12/2016 20:33

public class MyBean implements CommandLineRunner {

public void run(String... args) {
// Do something...

 }

}

You can additionally implement the org.springframework.core.Ordered interface or use the org.springframework.core.annotation.Order annotation
if several CommandLineRunner or ApplicationRunner beans are defined that must be called in a specific order.

23.9 Application exit
Each SpringApplication will register a shutdown hook with the JVM to ensure that the ApplicationContext is closed gracefully on exit. All the standard Spring
lifecycle callbacks (such as the DisposableBean interface, or the @PreDestroy annotation) can be used.

In addition, beans may implement the org.springframework.boot.ExitCodeGenerator interface if they wish to return a specific exit code when the application
ends.

23.10 Admin features
It is possible to enable admin-related features for the application by specifying the spring.application.admin.enabled property. This exposes the
SpringApplicationAdminMXBean on the platform MBeanServer . You could use this feature to administer your Spring Boot application remotely. This could also
be useful for any service wrapper implementation.

If you want to know on which HTTP port the application is running, get the property with key local.server.port .

Take care when enabling this feature as the MBean exposes a method to shutdown the application.

24. Externalized Configuration
Spring Boot allows you to externalize your configuration so you can work with the same application code in different environments. You can use properties files, YAML
files, environment variables and command-line arguments to externalize configuration. Property values can be injected directly into your beans using the @Value
annotation, accessed via Spring’s Environment abstraction or bound to structured objects via @ConfigurationProperties .

Spring Boot uses a very particular PropertySource order that is designed to allow sensible overriding of values. Properties are considered in the following order:

Devtools global settings properties on your home directory (~/.spring-boot-devtools.properties when devtools is active).1.
@TestPropertySource annotations on your tests.2.
@SpringBootTest#properties annotation attribute on your tests.3.
Command line arguments.4.
Properties from SPRING_APPLICATION_JSON (inline JSON embedded in an environment variable or system property)5.
ServletConfig init parameters.6.
ServletContext init parameters.7.
JNDI attributes from java:comp/env .8.
Java System properties (System.getProperties()).9.
OS environment variables.10.
A RandomValuePropertySource that only has properties in random.* .11.
Profile-specific application properties outside of your packaged jar (application-{profile}.properties and YAML variants)12.
Profile-specific application properties packaged inside your jar (application-{profile}.properties and YAML variants)13.
Application properties outside of your packaged jar (application.properties and YAML variants).14.
Application properties packaged inside your jar (application.properties and YAML variants).15.
@PropertySource annotations on your @Configuration classes.16.
Default properties (specified using SpringApplication.setDefaultProperties).17.

To provide a concrete example, suppose you develop a @Component that uses a name property:

import org.springframework.stereotype.*
import org.springframework.beans.factory.annotation.*

@Component
public class MyBean {

@Value("${name}")
private String name;

// ...

}

On your application classpath (e.g. inside your jar) you can have an application.properties that provides a sensible default property value for name . When
running in a new environment, an application.properties can be provided outside of your jar that overrides the name ; and for one-off testing, you can launch
with a specific command line switch (e.g. java -jar app.jar --name="Spring").

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

33 of 180 05/12/2016 20:33

The SPRING_APPLICATION_JSON properties can be supplied on the command line with an environment variable. For example in a UN*X shell:

$ SPRING_APPLICATION_JSON='{"foo":{"bar":"spam"}}' java -jar myapp.jar

In this example you will end up with foo.bar=spam in the Spring Environment . You can also supply the JSON as spring.application.json in a
System variable:
$ java -Dspring.application.json='{"foo":"bar"}' -jar myapp.jar

or command line argument:
$ java -jar myapp.jar --spring.application.json='{"foo":"bar"}'

or as a JNDI variable java:comp/env/spring.application.json .

24.1 Configuring random values
The RandomValuePropertySource is useful for injecting random values (e.g. into secrets or test cases). It can produce integers, longs, uuids or strings, e.g.

my.secret=${random.value}
my.number=${random.int}
my.bignumber=${random.long}
my.uuid=${random.uuid}
my.number.less.than.ten=${random.int(10)}
my.number.in.range=${random.int[1024,65536]}

The random.int* syntax is OPEN value (,max) CLOSE where the OPEN,CLOSE are any character and value,max are integers. If max is provided then
value is the minimum value and max is the maximum (exclusive).

24.2 Accessing command line properties
By default SpringApplication will convert any command line option arguments (starting with ‘--’, e.g. --server.port=9000) to a property and add it to the
Spring Environment . As mentioned above, command line properties always take precedence over other property sources.

If you don’t want command line properties to be added to the Environment you can disable them using
SpringApplication.setAddCommandLineProperties(false) .

24.3 Application property files
SpringApplication will load properties from application.properties files in the following locations and add them to the Spring Environment :

A /config subdirectory of the current directory.1.
The current directory2.
A classpath /config package3.
The classpath root4.

The list is ordered by precedence (properties defined in locations higher in the list override those defined in lower locations).

You can also use YAML ('.yml') files as an alternative to '.properties'.

If you don’t like application.properties as the configuration file name you can switch to another by specifying a spring.config.name environment property.
You can also refer to an explicit location using the spring.config.location environment property (comma-separated list of directory locations, or file paths).

$ java -jar myproject.jar --spring.config.name=myproject

or

$ java -jar myproject.jar --spring.config.location=classpath:/default.properties,classpath:/override.properties

spring.config.name and spring.config.location are used very early to determine which files have to be loaded so they have to be defined as
an environment property (typically OS env, system property or command line argument).

If spring.config.location contains directories (as opposed to files) they should end in / (and will be appended with the names generated from
spring.config.name before being loaded, including profile-specific file names). Files specified in spring.config.location are used as-is, with no support for
profile-specific variants, and will be overridden by any profile-specific properties.

The default search path classpath:,classpath:/config,file:,file:config/ is always used, irrespective of the value of spring.config.location . This
search path is ordered from lowest to highest precedence (file:config/ wins). If you do specify your own locations, they take precedence over all of the default
locations and use the same lowest to highest precedence ordering. In that way you can set up default values for your application in application.properties (or
whatever other basename you choose with spring.config.name) and override it at runtime with a different file, keeping the defaults.

If you use environment variables rather than system properties, most operating systems disallow period-separated key names, but you can use underscores
instead (e.g. SPRING_CONFIG_NAME instead of spring.config.name).

If you are running in a container then JNDI properties (in java:comp/env) or servlet context initialization parameters can be used instead of, or as well
as, environment variables or system properties.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

34 of 180 05/12/2016 20:33

24.4 Profile-specific properties
In addition to application.properties files, profile-specific properties can also be defined using the naming convention
application-{profile}.properties . The Environment has a set of default profiles (by default [default]) which are used if no active profiles are set (i.e. if
no profiles are explicitly activated then properties from application-default.properties are loaded).

Profile-specific properties are loaded from the same locations as standard application.properties , with profile-specific files always overriding the non-specific
ones irrespective of whether the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last wins strategy applies. For example, profiles specified by the spring.profiles.active property are added after those
configured via the SpringApplication API and therefore take precedence.

If you have specified any files in spring.config.location , profile-specific variants of those files will not be considered. Use directories
in`spring.config.location` if you also want to also use profile-specific properties.

24.5 Placeholders in properties
The values in application.properties are filtered through the existing Environment when they are used so you can refer back to previously defined values (e.g.
from System properties).

app.name=MyApp
app.description=${app.name} is a Spring Boot application

You can also use this technique to create ‘short’ variants of existing Spring Boot properties. See the Section 70.4, “Use ‘short’ command line arguments”
how-to for details.

24.6 Using YAML instead of Properties
YAML is a superset of JSON, and as such is a very convenient format for specifying hierarchical configuration data. The SpringApplication class will automatically
support YAML as an alternative to properties whenever you have the SnakeYAML library on your classpath.

If you use ‘Starters’ SnakeYAML will be automatically provided via spring-boot-starter .

24.6.1 Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The YamlPropertiesFactoryBean will load YAML as Properties
and the YamlMapFactoryBean will load YAML as a Map .

For example, the following YAML document:

environments:
 dev:
 url: http://dev.bar.com
 name: Developer Setup
 prod:
 url: http://foo.bar.com
 name: My Cool App

Would be transformed into these properties:

environments.dev.url=http://dev.bar.com
environments.dev.name=Developer Setup
environments.prod.url=http://foo.bar.com
environments.prod.name=My Cool App

YAML lists are represented as property keys with [index] dereferencers, for example this YAML:

my:
 servers:
 - dev.bar.com
 - foo.bar.com

Would be transformed into these properties:

my.servers[0]=dev.bar.com
my.servers[1]=foo.bar.com

To bind to properties like that using the Spring DataBinder utilities (which is what @ConfigurationProperties does) you need to have a property in the target
bean of type java.util.List (or Set) and you either need to provide a setter, or initialize it with a mutable value, e.g. this will bind to the properties above

@ConfigurationProperties(prefix="my")
public class Config {

private List<String> servers = new ArrayList<String>();

public List<String> getServers() {
return this.servers;

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

35 of 180 05/12/2016 20:33

 }
}

24.6.2 Exposing YAML as properties in the Spring Environment

The YamlPropertySourceLoader class can be used to expose YAML as a PropertySource in the Spring Environment . This allows you to use the familiar
@Value annotation with placeholders syntax to access YAML properties.

24.6.3 Multi-profile YAML documents

You can specify multiple profile-specific YAML documents in a single file by using a spring.profiles key to indicate when the document applies. For example:

server:
 address: 192.168.1.100

spring:
 profiles: development
server:
 address: 127.0.0.1

spring:
 profiles: production
server:
 address: 192.168.1.120

In the example above, the server.address property will be 127.0.0.1 if the development profile is active. If the development and production profiles are
not enabled, then the value for the property will be 192.168.1.100 .

The default profiles are activated if none are explicitly active when the application context starts. So in this YAML we set a value for security.user.password that is
only available in the "default" profile:

server:
 port: 8000

spring:
 profiles: default
security:
 user:
 password: weak

whereas in this example, the password is always set because it isn’t attached to any profile, and it would have to be explicitly reset in all other profiles as necessary:

server:
 port: 8000
security:
 user:
 password: weak

Spring profiles designated using the "spring.profiles" element may optionally be negated using the ! character. If both negated and non-negated profiles are specified for
a single document, at least one non-negated profile must match and no negated profiles may match.

24.6.4 YAML shortcomings

YAML files can’t be loaded via the @PropertySource annotation. So in the case that you need to load values that way, you need to use a properties file.

24.6.5 Merging YAML lists

As we have seen above, any YAML content is ultimately transformed to properties. That process may be counter intuitive when overriding “list” properties via a profile.

For example, assume a MyPojo object with name and description attributes that are null by default. Let’s expose a list of MyPojo from FooProperties :

@ConfigurationProperties("foo")
public class FooProperties {

private final List<MyPojo> list = new ArrayList<>();

public List<MyPojo> getList() {
return this.list;

 }

}

Consider the following configuration:

foo:
 list:
 - name: my name
 description: my description

spring:
 profiles: dev
foo:
 list:
 - name: my another name

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

36 of 180 05/12/2016 20:33

If the dev profile isn’t active, FooProperties.list will contain one MyPojo entry as defined above. If the dev profile is enabled however, the list will still only
contain one entry (with name “my another name” and description null). This configuration will not add a second MyPojo instance to the list, and it won’t merge the
items.

When a collection is specified in multiple profiles, the one with highest priority is used (and only that one):

foo:
 list:
 - name: my name
 description: my description
 - name: another name
 description: another description

spring:
 profiles: dev
foo:
 list:
 - name: my another name

In the example above, considering that the dev profile is active, FooProperties.list will contain one MyPojo entry (with name “my another name” and
description null).

24.7 Type-safe Configuration Properties
Using the @Value("${property}") annotation to inject configuration properties can sometimes be cumbersome, especially if you are working with multiple
properties or your data is hierarchical in nature. Spring Boot provides an alternative method of working with properties that allows strongly typed beans to govern and
validate the configuration of your application. For example:

@ConfigurationProperties(prefix="connection")
public class ConnectionProperties {

private String username;

private InetAddress remoteAddress;

// ... getters and setters

}

The getters and setters are advisable, since binding is via standard Java Beans property descriptors, just like in Spring MVC. They are mandatory for
immutable types or those that are directly coercible from String . As long as they are initialized, maps, collections, and arrays need a getter but not
necessarily a setter since they can be mutated by the binder. If there is a setter, Maps, collections, and arrays can be created. Maps and collections can be
expanded with only a getter, whereas arrays require a setter. Nested POJO properties can also be created (so a setter is not mandatory) if they have a
default constructor, or a constructor accepting a single value that can be coerced from String. Some people use Project Lombok to add getters and setters
automatically.

See also the differences between @Value and @ConfigurationProperties .

You also need to list the properties classes to register in the @EnableConfigurationProperties annotation:

@Configuration
@EnableConfigurationProperties(ConnectionProperties.class)
public class MyConfiguration {
}

When @ConfigurationProperties bean is registered that way, the bean will have a conventional name: <prefix>-<fqn> , where <prefix> is
the environment key prefix specified in the @ConfigurationProperties annotation and <fqn> the fully qualified name of the bean. If the annotation
does not provide any prefix, only the fully qualified name of the bean is used.
The bean name in the example above will be connection-com.example.ConnectionProperties , assuming that ConnectionProperties sits in
the com.example package.

Even if the configuration above will create a regular bean for ConnectionProperties , we recommend that @ConfigurationProperties only deal with the
environment and in particular does not inject other beans from the context. Having said that, The @EnableConfigurationProperties annotation is also

automatically applied to your project so that any existing bean annotated with @ConfigurationProperties will be configured from the Environment properties.
You could shortcut MyConfiguration above by making sure ConnectionProperties is a already a bean:

@Component
@ConfigurationProperties(prefix="connection")
public class ConnectionProperties {

// ... getters and setters

}

This style of configuration works particularly well with the SpringApplication external YAML configuration:

application.yml

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

37 of 180 05/12/2016 20:33

connection:
 username: admin
 remoteAddress: 192.168.1.1

additional configuration as required

To work with @ConfigurationProperties beans you can just inject them in the same way as any other bean.

@Service
public class MyService {

private final ConnectionProperties connection;

@Autowired
public MyService(ConnectionProperties connection) {

this.connection = connection;
 }

//...

@PostConstruct
public void openConnection() {

 Server server = new Server();
this.connection.configure(server);

 }

}

Using @ConfigurationProperties also allows you to generate meta-data files that can be used by IDEs. See the Appendix B, Configuration

meta-data appendix for details.

24.7.1 Third-party configuration

As well as using @ConfigurationProperties to annotate a class, you can also use it on public @Bean methods. This can be particularly useful when you want to
bind properties to third-party components that are outside of your control.

To configure a bean from the Environment properties, add @ConfigurationProperties to its bean registration:

@ConfigurationProperties(prefix = "foo")
@Bean
public FooComponent fooComponent() {
 ...
}

Any property defined with the foo prefix will be mapped onto that FooComponent bean in a similar manner as the ConnectionProperties example above.

24.7.2 Relaxed binding

Spring Boot uses some relaxed rules for binding Environment properties to @ConfigurationProperties beans, so there doesn’t need to be an exact match
between the Environment property name and the bean property name. Common examples where this is useful include dashed separated (e.g. context-path
binds to contextPath), and capitalized (e.g. PORT binds to port) environment properties.

For example, given the following @ConfigurationProperties class:

@ConfigurationProperties(prefix="person")
public class OwnerProperties {

private String firstName;

public String getFirstName() {
return this.firstName;

 }

public void setFirstName(String firstName) {
this.firstName = firstName;

 }

}

The following properties names can all be used:

Table 24.1. relaxed binding

Property Note

person.firstName Standard camel case syntax.

person.first-name Dashed notation, recommended for use in .properties and .yml files.

person.first_name Underscore notation, alternative format for use in .properties and .yml files.

PERSON_FIRST_NAME Upper case format. Recommended when using a system environment variables.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

38 of 180 05/12/2016 20:33

24.7.3 Properties conversion

Spring will attempt to coerce the external application properties to the right type when it binds to the @ConfigurationProperties beans. If you need custom type
conversion you can provide a ConversionService bean (with bean id conversionService) or custom property editors (via a CustomEditorConfigurer
bean) or custom Converters (with bean definitions annotated as @ConfigurationPropertiesBinding).

As this bean is requested very early during the application lifecycle, make sure to limit the dependencies that your ConversionService is using.
Typically, any dependency that you require may not be fully initialized at creation time. You may want to rename your custom ConversionService if it’s
not required for configuration keys coercion and only rely on custom converters qualified with @ConfigurationPropertiesBinding .

24.7.4 @ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303 (if it is on the classpath). You can simply add JSR-303 javax.validation
constraint annotations to your @ConfigurationProperties class:

@ConfigurationProperties(prefix="connection")
public class ConnectionProperties {

@NotNull
private InetAddress remoteAddress;

// ... getters and setters

}

In order to validate values of nested properties, you must annotate the associated field as @Valid to trigger its validation. For example, building upon the above
ConnectionProperties example:

@ConfigurationProperties(prefix="connection")
public class ConnectionProperties {

@NotNull
@Valid
private RemoteAddress remoteAddress;

// ... getters and setters

public static class RemoteAddress {

@NotEmpty
public String hostname;

// ... getters and setters

 }

}

You can also add a custom Spring Validator by creating a bean definition called configurationPropertiesValidator . The @Bean method should be
declared static . The configuration properties validator is created very early in the application’s lifecycle and declaring the @Bean method as static allows the bean to
be created without having to instantiate the @Configuration class. This avoids any problems that may be caused by early instantiation. There is a property validation
sample so you can see how to set things up.

The spring-boot-actuator module includes an endpoint that exposes all @ConfigurationProperties beans. Simply point your web browser to
/configprops or use the equivalent JMX endpoint. See the Production ready features. section for details.

24.7.5 @ConfigurationProperties vs. @Value

@Value is a core container feature and it does not provide the same features as type-safe Configuration Properties. The table below summarizes the features that are
supported by @ConfigurationProperties and @Value :

Feature @ConfigurationProperties @Value

Relaxed binding Yes No

Meta-data support Yes No

SpEL evaluation No Yes

If you define a set of configuration keys for your own components, we recommend you to group them in a POJO annotated with @ConfigurationProperties . Please
also be aware that since @Value does not support relaxed binding, it isn’t a great candidate if you need to provide the value using environment variables.

Finally, while you can write a SpEL expression in @Value , such expressions are not processed from Application property files.

25. Profiles
Spring Profiles provide a way to segregate parts of your application configuration and make it only available in certain environments. Any @Component or

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

39 of 180 05/12/2016 20:33

@Configuration can be marked with @Profile to limit when it is loaded:

@Configuration
@Profile("production")
public class ProductionConfiguration {

// ...

}

In the normal Spring way, you can use a spring.profiles.active Environment property to specify which profiles are active. You can specify the property in any
of the usual ways, for example you could include it in your application.properties :

spring.profiles.active=dev,hsqldb

or specify on the command line using the switch --spring.profiles.active=dev,hsqldb .

25.1 Adding active profiles
The spring.profiles.active property follows the same ordering rules as other properties, the highest PropertySource will win. This means that you can
specify active profiles in application.properties then replace them using the command line switch.

Sometimes it is useful to have profile-specific properties that add to the active profiles rather than replace them. The spring.profiles.include property can be
used to unconditionally add active profiles. The SpringApplication entry point also has a Java API for setting additional profiles (i.e. on top of those activated by the
spring.profiles.active property): see the setAdditionalProfiles() method.

For example, when an application with following properties is run using the switch --spring.profiles.active=prod the proddb and prodmq profiles will also
be activated:

my.property: fromyamlfile

spring.profiles: prod
spring.profiles.include:
 - proddb
 - prodmq

Remember that the spring.profiles property can be defined in a YAML document to determine when this particular document is included in the
configuration. See Section 70.7, “Change configuration depending on the environment” for more details.

25.2 Programmatically setting profiles
You can programmatically set active profiles by calling SpringApplication.setAdditionalProfiles(…) before your application runs. It is also possible to
activate profiles using Spring’s ConfigurableEnvironment interface.

25.3 Profile-specific configuration files
Profile-specific variants of both application.properties (or application.yml) and files referenced via @ConfigurationProperties are considered as
files are loaded. See Section 24.4, “Profile-specific properties” for details.

26. Logging
Spring Boot uses Commons Logging for all internal logging, but leaves the underlying log implementation open. Default configurations are provided for Java Util Logging,
Log4J2 and Logback. In each case loggers are pre-configured to use console output with optional file output also available.

By default, If you use the ‘Starters’, Logback will be used for logging. Appropriate Logback routing is also included to ensure that dependent libraries that use Java Util
Logging, Commons Logging, Log4J or SLF4J will all work correctly.

There are a lot of logging frameworks available for Java. Don’t worry if the above list seems confusing. Generally you won’t need to change your logging
dependencies and the Spring Boot defaults will work just fine.

26.1 Log format
The default log output from Spring Boot looks like this:

2014-03-05 10:57:51.112 INFO 45469 --- [main] org.apache.catalina.core.StandardEngine : Starting Servlet Engine: Apache Tomcat/7.0.52
2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext
2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.s.web.context.ContextLoader : Root WebApplicationContext: initialization completed
2014-03-05 10:57:51.698 INFO 45469 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrationBean : Mapping servlet: 'dispatcherServlet' to [/]
2014-03-05 10:57:51.702 INFO 45469 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:

Date and Time — Millisecond precision and easily sortable.
Log Level — ERROR , WARN , INFO , DEBUG or TRACE .
Process ID.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

40 of 180 05/12/2016 20:33

A --- separator to distinguish the start of actual log messages.
Thread name — Enclosed in square brackets (may be truncated for console output).
Logger name — This is usually the source class name (often abbreviated).
The log message.

Logback does not have a FATAL level (it is mapped to ERROR)

26.2 Console output
The default log configuration will echo messages to the console as they are written. By default ERROR , WARN and INFO level messages are logged. You can also
enable a “debug” mode by starting your application with a --debug flag.

$ java -jar myapp.jar --debug

you can also specify debug=true in your application.properties .

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate and Spring Boot) are configured to output more information. Enabling the
debug mode does not configure your application to log all messages with DEBUG level.

Alternatively, you can enable a “trace” mode by starting your application with a --trace flag (or trace=true in your application.properties). This will enable
trace logging for a selection of core loggers (embedded container, Hibernate schema generation and the whole Spring portfolio).

26.2.1 Color-coded output

If your terminal supports ANSI, color output will be used to aid readability. You can set spring.output.ansi.enabled to a supported value to override the auto
detection.

Color coding is configured using the %clr conversion word. In its simplest form the converter will color the output according to the log level, for example:

%clr(%5p)

The mapping of log level to a color is as follows:

Level Color

FATAL Red

ERROR Red

WARN Yellow

INFO Green

DEBUG Green

TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to the conversion. For example, to make the text yellow:

%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){yellow}

The following colors and styles are supported:

blue

cyan

faint

green

magenta

red

yellow

26.3 File output
By default, Spring Boot will only log to the console and will not write log files. If you want to write log files in addition to the console output you need to set a
logging.file or logging.path property (for example in your application.properties).

The following table shows how the logging.* properties can be used together:

Table 26.1. Logging properties

logging.file logging.path Example Description

(none) (none) Console only logging.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

41 of 180 05/12/2016 20:33

logging.file logging.path Example Description

Specific file (none) my.log Writes to the specified log file. Names can be an exact location or relative to the current directory.

(none) Specific directory /var/log Writes spring.log to the specified directory. Names can be an exact location or relative to the
current directory.

Log files will rotate when they reach 10 MB and as with console output, ERROR , WARN and INFO level messages are logged by default.

The logging system is initialized early in the application lifecycle and as such logging properties will not be found in property files loaded via
@PropertySource annotations.

Logging properties are independent of the actual logging infrastructure. As a result, specific configuration keys (such as logback.configurationFile
for Logback) are not managed by spring Boot.

26.4 Log Levels
All the supported logging systems can have the logger levels set in the Spring Environment (so for example in application.properties) using
‘logging.level.*=LEVEL’ where ‘LEVEL’ is one of TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF. The root logger can be configured using
logging.level.root . Example application.properties :

logging.level.root=WARN
logging.level.org.springframework.web=DEBUG
logging.level.org.hibernate=ERROR

By default Spring Boot remaps Thymeleaf INFO messages so that they are logged at DEBUG level. This helps to reduce noise in the standard log output.
See LevelRemappingAppender for details of how you can apply remapping in your own configuration.

26.5 Custom log configuration
The various logging systems can be activated by including the appropriate libraries on the classpath, and further customized by providing a suitable configuration file in
the root of the classpath, or in a location specified by the Spring Environment property logging.config .

You can force Spring Boot to use a particular logging system using the org.springframework.boot.logging.LoggingSystem system property. The value should
be the fully-qualified class name of a LoggingSystem implementation. You can also disable Spring Boot’s logging configuration entirely by using a value of none .

Since logging is initialized before the ApplicationContext is created, it isn’t possible to control logging from @PropertySources in Spring
@Configuration files. System properties and the conventional Spring Boot external configuration files work just fine.)

Depending on your logging system, the following files will be loaded:

Logging System Customization

Logback logback-spring.xml , logback-spring.groovy , logback.xml or logback.groovy

Log4j2 log4j2-spring.xml or log4j2.xml

JDK (Java Util Logging) logging.properties

When possible we recommend that you use the -spring variants for your logging configuration (for example logback-spring.xml rather than
logback.xml). If you use standard configuration locations, Spring cannot completely control log initialization.

There are known classloading issues with Java Util Logging that cause problems when running from an ‘executable jar’. We recommend that you avoid it if
at all possible.

To help with the customization some other properties are transferred from the Spring Environment to System properties:

Spring Environment System Property Comments

logging.exception-conversion-word LOG_EXCEPTION_CONVERSION_WORD The conversion word that’s used when logging exceptions.

logging.file LOG_FILE Used in default log configuration if defined.

logging.path LOG_PATH Used in default log configuration if defined.

logging.pattern.console CONSOLE_LOG_PATTERN The log pattern to use on the console (stdout). (Only supported with the
default logback setup.)

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

42 of 180 05/12/2016 20:33

All the logging systems supported can consult System properties when parsing their configuration files. See the default configurations in spring-boot.jar for
examples.

If you want to use a placeholder in a logging property, you should use Spring Boot’s syntax and not the syntax of the underlying framework. Notably, if
you’re using Logback, you should use : as the delimiter between a property name and its default value and not :- .

You can add MDC and other ad-hoc content to log lines by overriding only the LOG_LEVEL_PATTERN (or logging.pattern.level with Logback). For
example, if you use logging.pattern.level=user:%X{user} %5p then the default log format will contain an MDC entry for "user" if it exists, e.g.

2015-09-30 12:30:04.031 user:juergen INFO 22174 --- [nio-8080-exec-0] demo.Controller
Handling authenticated request

26.6 Logback extensions
Spring Boot includes a number of extensions to Logback which can help with advanced configuration. You can use these extensions in your logback-spring.xml
configuration file.

You cannot use extensions in the standard logback.xml configuration file since it’s loaded too early. You need to either use logback-spring.xml or
define a logging.config property.

26.6.1 Profile-specific configuration

The <springProfile> tag allows you to optionally include or exclude sections of configuration based on the active Spring profiles. Profile sections are supported
anywhere within the <configuration> element. Use the name attribute to specify which profile accepts the configuration. Multiple profiles can be specified using a
comma-separated list.

<springProfile name="staging">
<!-- configuration to be enabled when the "staging" profile is active -->

</springProfile>

<springProfile name="dev, staging">
<!-- configuration to be enabled when the "dev" or "staging" profiles are active -->

</springProfile>

<springProfile name="!production">
<!-- configuration to be enabled when the "production" profile is not active -->

</springProfile>

26.6.2 Environment properties

The <springProperty> tag allows you to surface properties from the Spring Environment for use within Logback. This can be useful if you want to access values
from your application.properties file in your logback configuration. The tag works in a similar way to Logback’s standard <property> tag, but rather than
specifying a direct value you specify the source of the property (from the Environment). You can use the scope attribute if you need to store the property
somewhere other than in local scope. If you need a fallback value in case the property is not set in the Environment , you can use the defaultValue attribute.

<springProperty scope="context" name="fluentHost" source="myapp.fluentd.host"
defaultValue="localhost"/>

<appender name="FLUENT" class="ch.qos.logback.more.appenders.DataFluentAppender">
<remoteHost>${fluentHost}</remoteHost>

 ...
</appender>

The RelaxedPropertyResolver is used to access Environment properties. If specify the source in dashed notation (my-property-name) all
the relaxed variations will be tried (myPropertyName , MY_PROPERTY_NAME etc).

27. Developing web applications
Spring Boot is well suited for web application development. You can easily create a self-contained HTTP server using embedded Tomcat, Jetty, or Undertow. Most web
applications will use the spring-boot-starter-web module to get up and running quickly.

If you haven’t yet developed a Spring Boot web application you can follow the "Hello World!" example in the Getting started section.

27.1 The ‘Spring Web MVC framework’
The Spring Web MVC framework (often referred to as simply ‘Spring MVC’) is a rich ‘model view controller’ web framework. Spring MVC lets you create special
@Controller or @RestController beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP using @RequestMapping
annotations.

Here is a typical example @RestController to serve JSON data:

@RestController
@RequestMapping(value="/users")
public class MyRestController {

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

43 of 180 05/12/2016 20:33

@RequestMapping(value="/{user}", method=RequestMethod.GET)
public User getUser(@PathVariable Long user) {

// ...
 }

@RequestMapping(value="/{user}/customers", method=RequestMethod.GET)
 List<Customer> getUserCustomers(@PathVariable Long user) {

// ...
 }

@RequestMapping(value="/{user}", method=RequestMethod.DELETE)
public User deleteUser(@PathVariable Long user) {

// ...
 }

}

Spring MVC is part of the core Spring Framework and detailed information is available in the reference documentation. There are also several guides available at
spring.io/guides that cover Spring MVC.

27.1.1 Spring MVC auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

Inclusion of ContentNegotiatingViewResolver and BeanNameViewResolver beans.
Support for serving static resources, including support for WebJars (see below).
Automatic registration of Converter , GenericConverter , Formatter beans.
Support for HttpMessageConverters (see below).
Automatic registration of MessageCodesResolver (see below).
Static index.html support.
Custom Favicon support.
Automatic use of a ConfigurableWebBindingInitializer bean (see below).

If you want to keep Spring Boot MVC features, and you just want to add additional MVC configuration (interceptors, formatters, view controllers etc.) you can add your
own @Configuration class of type WebMvcConfigurerAdapter , but without @EnableWebMvc . If you wish to provide custom instances of
RequestMappingHandlerMapping , RequestMappingHandlerAdapter or ExceptionHandlerExceptionResolver you can declare a
WebMvcRegistrationsAdapter instance providing such components.

If you want to take complete control of Spring MVC, you can add your own @Configuration annotated with @EnableWebMvc .

27.1.2 HttpMessageConverters

Spring MVC uses the HttpMessageConverter interface to convert HTTP requests and responses. Sensible defaults are included out of the box, for example Objects
can be automatically converted to JSON (using the Jackson library) or XML (using the Jackson XML extension if available, else using JAXB). Strings are encoded using
UTF-8 by default.

If you need to add or customize converters you can use Spring Boot’s HttpMessageConverters class:

import org.springframework.boot.autoconfigure.web.HttpMessageConverters;
import org.springframework.context.annotation.*;
import org.springframework.http.converter.*;

@Configuration
public class MyConfiguration {

@Bean
public HttpMessageConverters customConverters() {

 HttpMessageConverter<?> additional = ...
 HttpMessageConverter<?> another = ...

return new HttpMessageConverters(additional, another);
 }

}

Any HttpMessageConverter bean that is present in the context will be added to the list of converters. You can also override default converters that way.

27.1.3 Custom JSON Serializers and Deserializers

If you’re using Jackson to serialize and deserialize JSON data, you might want to write your own JsonSerializer and JsonDeserializer classes. Custom
serializers are usually registered with Jackson via a Module, but Spring Boot provides an alternative @JsonComponent annotation which makes it easier to directly
register Spring Beans.

You can use @JsonComponent directly on JsonSerializer or JsonDeserializer implementations. You can also use it on classes that contains
serializers/deserializers as inner-classes. For example:

import java.io.*;
import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.databind.*;
import org.springframework.boot.jackson.*;

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

44 of 180 05/12/2016 20:33

@JsonComponent
public class Example {

public static class Serializer extends JsonSerializer<SomeObject> {
// ...

 }

public static class Deserializer extends JsonDeserializer<SomeObject> {
// ...

 }

}

All @JsonComponent beans in the ApplicationContext will be automatically registered with Jackson, and since @JsonComponent is meta-annotated with
@Component , the usual component-scanning rules apply.

Spring Boot also provides JsonObjectSerializer and JsonObjectDeserializer base classes which provide useful alternatives to the standard Jackson
versions when serializing Objects. See the Javadoc for details.

27.1.4 MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors: MessageCodesResolver . Spring Boot will create one for you
if you set the spring.mvc.message-codes-resolver.format property PREFIX_ERROR_CODE or POSTFIX_ERROR_CODE (see the enumeration in
DefaultMessageCodesResolver.Format).

27.1.5 Static Content

By default Spring Boot will serve static content from a directory called /static (or /public or /resources or /META-INF/resources) in the classpath or from
the root of the ServletContext . It uses the ResourceHttpRequestHandler from Spring MVC so you can modify that behavior by adding your own
WebMvcConfigurerAdapter and overriding the addResourceHandlers method.

In a stand-alone web application the default servlet from the container is also enabled, and acts as a fallback, serving content from the root of the ServletContext if
Spring decides not to handle it. Most of the time this will not happen (unless you modify the default MVC configuration) because Spring will always be able to handle
requests through the DispatcherServlet .

You can customize the static resource locations using spring.resources.staticLocations (replacing the default values with a list of directory locations). If you do
this the default welcome page detection will switch to your custom locations, so if there is an index.html in any of your locations on startup, it will be the home page of
the application.

In addition to the ‘standard’ static resource locations above, a special case is made for Webjars content. Any resources with a path in /webjars/** will be served from
jar files if they are packaged in the Webjars format.

Do not use the src/main/webapp directory if your application will be packaged as a jar. Although this directory is a common standard, it will only work
with war packaging and it will be silently ignored by most build tools if you generate a jar.

Spring Boot also supports advanced resource handling features provided by Spring MVC, allowing use cases such as cache busting static resources or using version
agnostic URLs for Webjars.

To use version agnostic URLs for Webjars, simply add the webjars-locator dependency. Then declare your Webjar, taking jQuery for example, as
"/webjars/jquery/dist/jquery.min.js" which results in "/webjars/jquery/x.y.z/dist/jquery.min.js" where x.y.z is the Webjar version.

If you are using JBoss, you’ll need to declare the webjars-locator-jboss-vfs dependency instead of the webjars-locator ; otherwise all
Webjars resolve as a 404 .

To use cache busting, the following configuration will configure a cache busting solution for all static resources, effectively adding a content hash in URLs, such as
<link href="/css/spring-2a2d595e6ed9a0b24f027f2b63b134d6.css"/> :

spring.resources.chain.strategy.content.enabled=true
spring.resources.chain.strategy.content.paths=/**

Links to resources are rewritten at runtime in template, thanks to a ResourceUrlEncodingFilter , auto-configured for Thymeleaf and FreeMarker. You
should manually declare this filter when using JSPs. Other template engines aren’t automatically supported right now, but can be with custom template
macros/helpers and the use of the ResourceUrlProvider .

When loading resources dynamically with, for example, a JavaScript module loader, renaming files is not an option. That’s why other strategies are also supported and
can be combined. A "fixed" strategy will add a static version string in the URL, without changing the file name:

spring.resources.chain.strategy.content.enabled=true
spring.resources.chain.strategy.content.paths=/**
spring.resources.chain.strategy.fixed.enabled=true
spring.resources.chain.strategy.fixed.paths=/js/lib/
spring.resources.chain.strategy.fixed.version=v12

With this configuration, JavaScript modules located under "/js/lib/" will use a fixed versioning strategy "/v12/js/lib/mymodule.js" while other resources will
still use the content one <link href="/css/spring-2a2d595e6ed9a0b24f027f2b63b134d6.css"/> .

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

45 of 180 05/12/2016 20:33

This feature has been thoroughly described in a dedicated blog post and in Spring Framework’s reference documentation.

27.1.6 ConfigurableWebBindingInitializer

Spring MVC uses a WebBindingInitializer to initialize a WebDataBinder for a particular request. If you create your own
ConfigurableWebBindingInitializer @Bean , Spring Boot will automatically configure Spring MVC to use it.

27.1.7 Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring MVC supports a variety of templating technologies including
Thymeleaf, FreeMarker and JSPs. Many other templating engines also ship their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:

FreeMarker
Groovy
Thymeleaf
Mustache

JSPs should be avoided if possible, there are several known limitations when using them with embedded servlet containers.

When you’re using one of these templating engines with the default configuration, your templates will be picked up automatically from
src/main/resources/templates .

IntelliJ IDEA orders the classpath differently depending on how you run your application. Running your application in the IDE via its main method will result
in a different ordering to when you run your application using Maven or Gradle or from its packaged jar. This can cause Spring Boot to fail to find the
templates on the classpath. If you’re affected by this problem you can reorder the classpath in the IDE to place the module’s classes and resources first.
Alternatively, you can configure the template prefix to search every templates directory on the classpath: classpath*:/templates/ .

27.1.8 Error Handling

Spring Boot provides an /error mapping by default that handles all errors in a sensible way, and it is registered as a ‘global’ error page in the servlet container. For
machine clients it will produce a JSON response with details of the error, the HTTP status and the exception message. For browser clients there is a ‘whitelabel’ error
view that renders the same data in HTML format (to customize it just add a View that resolves to ‘error’). To replace the default behaviour completely you can implement
ErrorController and register a bean definition of that type, or simply add a bean of type ErrorAttributes to use the existing mechanism but replace the
contents.

The BasicErrorController can be used as a base class for a custom ErrorController . This is particularly useful if you want to add a handler for
a new content type (the default is to handle text/html specifically and provide a fallback for everything else). To do that just extend
BasicErrorController and add a public method with a @RequestMapping that has a produces attribute, and create a bean of your new type.

You can also define a @ControllerAdvice to customize the JSON document to return for a particular controller and/or exception type.

@ControllerAdvice(basePackageClasses = FooController.class)
public class FooControllerAdvice extends ResponseEntityExceptionHandler {

@ExceptionHandler(YourException.class)
@ResponseBody

 ResponseEntity<?> handleControllerException(HttpServletRequest request, Throwable ex) {
 HttpStatus status = getStatus(request);

return new ResponseEntity<>(new CustomErrorType(status.value(), ex.getMessage()), status);
 }

private HttpStatus getStatus(HttpServletRequest request) {
 Integer statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");

if (statusCode == null) {
return HttpStatus.INTERNAL_SERVER_ERROR;

 }
return HttpStatus.valueOf(statusCode);

 }

}

In the example above, if YourException is thrown by a controller defined in the same package as FooController , a json representation of the
CustomerErrorType POJO will be used instead of the ErrorAttributes representation.

Custom error pages

If you want to display a custom HTML error page for a given status code, you add a file to an /error folder. Error pages can either be static HTML (i.e. added under
any of the static resource folders) or built using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would look like this:

src/
 +- main/

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

46 of 180 05/12/2016 20:33

 +- java/
 | + <source code>
 +- resources/
 +- public/
 +- error/
 | +- 404.html
 +- <other public assets>

To map all 5xx errors using a FreeMarker template, you’d have a structure like this:

src/
 +- main/
 +- java/
 | + <source code>
 +- resources/
 +- templates/
 +- error/
 | +- 5xx.ftl
 +- <other templates>

For more complex mappings you can also add beans that implement the ErrorViewResolver interface.

public class MyErrorViewResolver implements ErrorViewResolver {

@Override
public ModelAndView resolveErrorView(HttpServletRequest request,

 HttpStatus status, Map<String, Object> model) {
// Use the request or status to optionally return a ModelAndView
return ...

 }

}

You can also use regular Spring MVC features like @ExceptionHandler methods and @ControllerAdvice . The ErrorController will then pick up any
unhandled exceptions.

Mapping error pages outside of Spring MVC

For applications that aren’t using Spring MVC, you can use the ErrorPageRegistrar interface to directly register ErrorPages . This abstraction works directly with
the underlying embedded servlet container and will work even if you don’t have a Spring MVC DispatcherServlet .

@Bean
public ErrorPageRegistrar errorPageRegistrar(){

return new MyErrorPageRegistrar();
}

// ...

private static class MyErrorPageRegistrar implements ErrorPageRegistrar {

@Override
public void registerErrorPages(ErrorPageRegistry registry) {

 registry.addErrorPages(new ErrorPage(HttpStatus.BAD_REQUEST, "/400"));
 }

}

N.B. if you register an ErrorPage with a path that will end up being handled by a Filter (e.g. as is common with some non-Spring web frameworks, like Jersey and
Wicket), then the Filter has to be explicitly registered as an ERROR dispatcher, e.g.

@Bean
public FilterRegistrationBean myFilter() {
 FilterRegistrationBean registration = new FilterRegistrationBean();
 registration.setFilter(new MyFilter());
 ...
 registration.setDispatcherTypes(EnumSet.allOf(DispatcherType.class));

return registration;
}

(the default FilterRegistrationBean does not include the ERROR dispatcher type).

Error Handling on WebSphere Application Server

When deployed to a servlet container, a Spring Boot uses its error page filter to forward a request with an error status to the appropriate error page. The request can only
be forwarded to the correct error page if the response has not already been committed. By default, WebSphere Application Server 8.0 and later commits the response
upon successful completion of a servlet’s service method. You should disable this behaviour by setting com.ibm.ws.webcontainer.invokeFlushAfterService
to false

27.1.9 Spring HATEOAS

If you’re developing a RESTful API that makes use of hypermedia, Spring Boot provides auto-configuration for Spring HATEOAS that works well with most applications.
The auto-configuration replaces the need to use @EnableHypermediaSupport and registers a number of beans to ease building hypermedia-based applications
including a LinkDiscoverers (for client side support) and an ObjectMapper configured to correctly marshal responses into the desired representation. The
ObjectMapper will be customized based on the spring.jackson.* properties or a Jackson2ObjectMapperBuilder bean if one exists.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

47 of 180 05/12/2016 20:33

You can take control of Spring HATEOAS’s configuration by using @EnableHypermediaSupport . Note that this will disable the ObjectMapper customization
described above.

27.1.10 CORS support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that allows you to specify in a flexible way what kind of cross domain
requests are authorized, instead of using some less secure and less powerful approaches like IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS out of the box. Using controller method CORS configuration with @CrossOrigin annotations in your Spring Boot
application does not require any specific configuration. Global CORS configuration can be defined by registering a WebMvcConfigurer bean with a customized
addCorsMappings(CorsRegistry) method:

@Configuration
public class MyConfiguration {

@Bean
public WebMvcConfigurer corsConfigurer() {

return new WebMvcConfigurerAdapter() {
@Override
public void addCorsMappings(CorsRegistry registry) {

 registry.addMapping("/api/**");
 }
 };
 }
}

27.2 JAX-RS and Jersey
If you prefer the JAX-RS programming model for REST endpoints you can use one of the available implementations instead of Spring MVC. Jersey 1.x and Apache CXF
work quite well out of the box if you just register their Servlet or Filter as a @Bean in your application context. Jersey 2.x has some native Spring support so we
also provide auto-configuration support for it in Spring Boot together with a starter.

To get started with Jersey 2.x just include the spring-boot-starter-jersey as a dependency and then you need one @Bean of type ResourceConfig in which
you register all the endpoints:

@Component
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
 register(Endpoint.class);
 }

}

Jersey’s support for scanning executable archives is rather limited. For example, it cannot scan for endpoints in a package found in WEB-INF/classes
when running an executable war file. To avoid this limitation, the packages method should not be used and endpoints should be registered individually
using the register method as shown above.

You can also register an arbitrary number of beans implementing ResourceConfigCustomizer for more advanced customizations.

All the registered endpoints should be @Components with HTTP resource annotations (@GET etc.), e.g.

@Component
@Path("/hello")
public class Endpoint {

@GET
public String message() {

return "Hello";
 }

}

Since the Endpoint is a Spring @Component its lifecycle is managed by Spring and you can @Autowired dependencies and inject external configuration with
@Value . The Jersey servlet will be registered and mapped to /* by default. You can change the mapping by adding @ApplicationPath to your
ResourceConfig .

By default Jersey will be set up as a Servlet in a @Bean of type ServletRegistrationBean named jerseyServletRegistration . By default, the servlet will
be initialized lazily but you can customize it with spring.jersey.servlet.load-on-startup .You can disable or override that bean by creating one of your own
with the same name. You can also use a Filter instead of a Servlet by setting spring.jersey.type=filter (in which case the @Bean to replace or override is
jerseyFilterRegistration). The servlet has an @Order which you can set with spring.jersey.filter.order . Both the Servlet and the Filter registrations
can be given init parameters using spring.jersey.init.* to specify a map of properties.

There is a Jersey sample so you can see how to set things up. There is also a Jersey 1.x sample. Note that in the Jersey 1.x sample that the spring-boot maven plugin
has been configured to unpack some Jersey jars so they can be scanned by the JAX-RS implementation (because the sample asks for them to be scanned in its
Filter registration). You may need to do the same if any of your JAX-RS resources are packaged as nested jars.

27.3 Embedded servlet container support

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

48 of 180 05/12/2016 20:33

instance. By default the embedded server will listen for HTTP requests on port 8080 .

27.3.1 Servlets, Filters, and listeners

When using an embedded servlet container you can register Servlets, Filters and all the listeners from the Servlet spec (e.g. HttpSessionListener) either by using
Spring beans or by scanning for Servlet components.

Registering Servlets, Filters, and listeners as Spring beans

Any Servlet , Filter or Servlet *Listener instance that is a Spring bean will be registered with the embedded container. This can be particularly convenient if
you want to refer to a value from your application.properties during configuration.

By default, if the context contains only a single Servlet it will be mapped to / . In the case of multiple Servlet beans the bean name will be used as a path prefix. Filters
will map to /* .

If convention-based mapping is not flexible enough you can use the ServletRegistrationBean , FilterRegistrationBean and
ServletListenerRegistrationBean classes for complete control.

27.3.2 Servlet Context Initialization

Embedded servlet containers will not directly execute the Servlet 3.0+ javax.servlet.ServletContainerInitializer interface, or Spring’s
org.springframework.web.WebApplicationInitializer interface. This is an intentional design decision intended to reduce the risk that 3rd party libraries
designed to run inside a war will break Spring Boot applications.

If you need to perform servlet context initialization in a Spring Boot application, you should register a bean that implements the
org.springframework.boot.context.embedded.ServletContextInitializer interface. The single onStartup method provides access to the
ServletContext , and can easily be used as an adapter to an existing WebApplicationInitializer if necessary.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of @WebServlet , @WebFilter , and @WebListener annotated classes can be enabled using
@ServletComponentScan .

@ServletComponentScan will have no effect in a standalone container, where the container’s built-in discovery mechanisms will be used instead.

27.3.3 The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of ApplicationContext for embedded servlet container support. The EmbeddedWebApplicationContext is a
special type of WebApplicationContext that bootstraps itself by searching for a single EmbeddedServletContainerFactory bean. Usually a
TomcatEmbeddedServletContainerFactory , JettyEmbeddedServletContainerFactory , or UndertowEmbeddedServletContainerFactory will
have been auto-configured.

You usually won’t need to be aware of these implementation classes. Most applications will be auto-configured and the appropriate
ApplicationContext and EmbeddedServletContainerFactory will be created on your behalf.

27.3.4 Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Environment properties. Usually you would define the properties in your
application.properties file.

Common server settings include:

Network settings: listen port for incoming HTTP requests (server.port), interface address to bind to server.address , etc.
Session settings: whether the session is persistent (server.session.persistence), session timeout (server.session.timeout), location of session data
(server.session.store-dir) and session-cookie configuration (server.session.cookie.*).
Error management: location of the error page (server.error.path), etc.
SSL
HTTP compression

Spring Boot tries as much as possible to expose common settings but this is not always possible. For those cases, dedicated namespaces offer server-specific
customizations (see server.tomcat and server.undertow). For instance, access logs can be configured with specific features of the embedded servlet container.

See the ServerProperties class for a complete list.

Programmatic customization

If you need to configure your embedded servlet container programmatically you can register a Spring bean that implements the
EmbeddedServletContainerCustomizer interface. EmbeddedServletContainerCustomizer provides access to the
ConfigurableEmbeddedServletContainer which includes numerous customization setter methods.

import org.springframework.boot.context.embedded.*;
import org.springframework.stereotype.Component;

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

49 of 180 05/12/2016 20:33

@Component
public class CustomizationBean implements EmbeddedServletContainerCustomizer {

@Override
public void customize(ConfigurableEmbeddedServletContainer container) {

 container.setPort(9000);
 }

}

Customizing ConfigurableEmbeddedServletContainer directly

If the above customization techniques are too limited, you can register the TomcatEmbeddedServletContainerFactory ,
JettyEmbeddedServletContainerFactory or UndertowEmbeddedServletContainerFactory bean yourself.

@Bean
public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory factory = new TomcatEmbeddedServletContainerFactory();
 factory.setPort(9000);
 factory.setSessionTimeout(10, TimeUnit.MINUTES);
 factory.addErrorPages(new ErrorPage(HttpStatus.NOT_FOUND, "/notfound.html"));

return factory;
}

Setters are provided for many configuration options. Several protected method ‘hooks’ are also provided should you need to do something more exotic. See the source
code documentation for details.

27.3.5 JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as an executable archive), there are some limitations in the JSP
support.

With Tomcat it should work if you use war packaging, i.e. an executable war will work, and will also be deployable to a standard container (not limited to, but including
Tomcat). An executable jar will not work because of a hard coded file pattern in Tomcat.
With Jetty it should work if you use war packaging, i.e. an executable war will work, and will also be deployable to any standard container.
Undertow does not support JSPs.
Creating a custom error.jsp page won’t override the default view for error handling, custom error pages should be used instead.

There is a JSP sample so you can see how to set things up.

28. Security
If Spring Security is on the classpath then web applications will be secure by default with ‘basic’ authentication on all HTTP endpoints. To add method-level security to a
web application you can also add @EnableGlobalMethodSecurity with your desired settings. Additional information can be found in the Spring Security Reference.

The default AuthenticationManager has a single user (‘user’ username and random password, printed at INFO level when the application starts up)

Using default security password: 78fa095d-3f4c-48b1-ad50-e24c31d5cf35

If you fine-tune your logging configuration, ensure that the org.springframework.boot.autoconfigure.security category is set to log INFO
messages, otherwise the default password will not be printed.

You can change the password by providing a security.user.password . This and other useful properties are externalized via SecurityProperties (properties
prefix "security").

The default security configuration is implemented in SecurityAutoConfiguration and in the classes imported from there
(SpringBootWebSecurityConfiguration for web security and AuthenticationManagerConfiguration for authentication configuration which is also
relevant in non-web applications). To switch off the default web application security configuration completely you can add a bean with @EnableWebSecurity (this does
not disable the authentication manager configuration or Actuator’s security). To customize it you normally use external properties and beans of type
WebSecurityConfigurerAdapter (e.g. to add form-based login). To also switch off the authentication manager configuration you can add a bean of type
AuthenticationManager , or else configure the global AuthenticationManager by autowiring an AuthenticationManagerBuilder into a method in one of
your @Configuration classes. There are several secure applications in the Spring Boot samples to get you started with common use cases.

The basic features you get out of the box in a web application are:

An AuthenticationManager bean with in-memory store and a single user (see SecurityProperties.User for the properties of the user).
Ignored (insecure) paths for common static resource locations (/css/** , /js/** , /images/** , /webjars/** and **/favicon.ico).
HTTP Basic security for all other endpoints.
Security events published to Spring’s ApplicationEventPublisher (successful and unsuccessful authentication and access denied).
Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are on by default.

All of the above can be switched on and off or modified using external properties (security.*). To override the access rules without changing any other
auto-configured features add a @Bean of type WebSecurityConfigurerAdapter with @Order(SecurityProperties.ACCESS_OVERRIDE_ORDER) and
configure it to meet your needs.

By default, a WebSecurityConfigurerAdapter will match any path. If you don’t want to completely override Spring Boot’s auto-configured access
rules, your adapter must explicitly configure the paths that you do want to override.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

50 of 180 05/12/2016 20:33

28.1 OAuth2
If you have spring-security-oauth2 on your classpath you can take advantage of some auto-configuration to make it easy to set up Authorization or Resource
Server. For full details, see the Spring Security OAuth 2 Developers Guide.

28.1.1 Authorization Server

To create an Authorization Server and grant access tokens you need to use @EnableAuthorizationServer and provide
security.oauth2.client.client-id and security.oauth2.client.client-secret] properties. The client will be registered for you in an in-memory
repository.

Having done that you will be able to use the client credentials to create an access token, for example:

$ curl client:secret@localhost:8080/oauth/token -d grant_type=password -d username=user -d password=pwd

The basic auth credentials for the /token endpoint are the client-id and client-secret . The user credentials are the normal Spring Security user details
(which default in Spring Boot to “user” and a random password).

To switch off the auto-configuration and configure the Authorization Server features yourself just add a @Bean of type AuthorizationServerConfigurer .

28.1.2 Resource Server

To use the access token you need a Resource Server (which can be the same as the Authorization Server). Creating a Resource Server is easy, just add
@EnableResourceServer and provide some configuration to allow the server to decode access tokens. If your application is also an Authorization Server it already
knows how to decode tokens, so there is nothing else to do. If your app is a standalone service then you need to give it some more configuration, one of the following
options:

security.oauth2.resource.user-info-uri to use the /me resource (e.g. https://uaa.run.pivotal.io/userinfo on PWS)
security.oauth2.resource.token-info-uri to use the token decoding endpoint (e.g. https://uaa.run.pivotal.io/check_token on PWS).

If you specify both the user-info-uri and the token-info-uri then you can set a flag to say that one is preferred over the other (prefer-token-info=true
is the default).

Alternatively (instead of user-info-uri or token-info-uri) if the tokens are JWTs you can configure a security.oauth2.resource.jwt.key-value to
decode them locally (where the key is a verification key). The verification key value is either a symmetric secret or PEM-encoded RSA public key. If you don’t have the key
and it’s public you can provide a URI where it can be downloaded (as a JSON object with a “value” field) with security.oauth2.resource.jwt.key-uri . E.g. on
PWS:

$ curl https://uaa.run.pivotal.io/token_key
{"alg":"SHA256withRSA","value":"-----BEGIN PUBLIC KEY-----\nMIIBI...\n-----END PUBLIC KEY-----\n"}

If you use the security.oauth2.resource.jwt.key-uri the authorization server needs to be running when your application starts up. It will log a
warning if it can’t find the key, and tell you what to do to fix it.

28.2 Token Type in User Info
Google, and certain other 3rd party identity providers, are more strict about the token type name that is sent in the headers to the user info endpoint. The default is
“Bearer” which suits most providers and matches the spec, but if you need to change it you can set security.oauth2.resource.token-type .

28.3 Customizing the User Info RestTemplate
If you have a user-info-uri , the resource server features use an OAuth2RestTemplate internally to fetch user details for authentication. This is provided as a
qualified @Bean with id userInfoRestTemplate , but you shouldn’t need to know that to just use it. The default should be fine for most providers, but occasionally
you might need to add additional interceptors, or change the request authenticator (which is how the token gets attached to outgoing requests). To add a customization
just create a bean of type UserInfoRestTemplateCustomizer - it has a single method that will be called after the bean is created but before it is initialized. The rest
template that is being customized here is only used internally to carry out authentication.

To set an RSA key value in YAML use the “pipe” continuation marker to split it over multiple lines (“|”) and remember to indent the key value (it’s a standard
YAML language feature). Example:
security:
 oauth2:
 resource:
 jwt:
 keyValue: |
 -----BEGIN PUBLIC KEY-----
 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC...
 -----END PUBLIC KEY-----

28.3.1 Client

To make your web-app into an OAuth2 client you can simply add @EnableOAuth2Client and Spring Boot will create a OAuth2ClientContext and
OAuth2ProtectedResourceDetails that are necessary to create an OAuth2RestOperations . Spring Boot does not automatically create such bean but you can
easily create your own:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

51 of 180 05/12/2016 20:33

public OAuth2RestTemplate oauth2RestTemplate(OAuth2ClientContext oauth2ClientContext,
 OAuth2ProtectedResourceDetails details) {

return new OAuth2RestTemplate(details, oauth2ClientContext);
}

You may want to add a qualifier and review your configuration as more than one RestTemplate may be defined in your application.

This configuration uses security.oauth2.client.* as credentials (the same as you might be using in the Authorization Server), but in addition it will need to know
the authorization and token URIs in the Authorization Server. For example:

application.yml.

security:
 oauth2:
 client:
 clientId: bd1c0a783ccdd1c9b9e4
 clientSecret: 1a9030fbca47a5b2c28e92f19050bb77824b5ad1
 accessTokenUri: https://github.com/login/oauth/access_token
 userAuthorizationUri: https://github.com/login/oauth/authorize
 clientAuthenticationScheme: form

An application with this configuration will redirect to Github for authorization when you attempt to use the OAuth2RestTemplate . If you are already signed into Github
you won’t even notice that it has authenticated. These specific credentials will only work if your application is running on port 8080 (register your own client app in Github
or other provider for more flexibility).

To limit the scope that the client asks for when it obtains an access token you can set security.oauth2.client.scope (comma separated or an array in YAML). By
default the scope is empty and it is up to Authorization Server to decide what the defaults should be, usually depending on the settings in the client registration that it
holds.

There is also a setting for security.oauth2.client.client-authentication-scheme which defaults to “header” (but you might need to set it to
“form” if, like Github for instance, your OAuth2 provider doesn’t like header authentication). In fact, the security.oauth2.client.* properties are
bound to an instance of AuthorizationCodeResourceDetails so all its properties can be specified.

In a non-web application you can still create an OAuth2RestOperations and it is still wired into the security.oauth2.client.* configuration. In
this case it is a “client credentials token grant” you will be asking for if you use it (and there is no need to use @EnableOAuth2Client or
@EnableOAuth2Sso). To prevent that infrastructure to be defined, just remove the security.oauth2.client.client-id from your configuration
(or make it the empty string).

28.3.2 Single Sign On

An OAuth2 Client can be used to fetch user details from the provider (if such features are available) and then convert them into an Authentication token for Spring
Security. The Resource Server above support this via the user-info-uri property This is the basis for a Single Sign On (SSO) protocol based on OAuth2, and Spring
Boot makes it easy to participate by providing an annotation @EnableOAuth2Sso . The Github client above can protect all its resources and authenticate using the
Github /user/ endpoint, by adding that annotation and declaring where to find the endpoint (in addition to the security.oauth2.client.* configuration already
listed above):

application.yml.

security:
 oauth2:
...
 resource:
 userInfoUri: https://api.github.com/user
 preferTokenInfo: false

Since all paths are secure by default, there is no “home” page that you can show to unauthenticated users and invite them to login (by visiting the /login path, or the
path specified by security.oauth2.sso.login-path).

To customize the access rules or paths to protect, so you can add a “home” page for instance, @EnableOAuth2Sso can be added to a
WebSecurityConfigurerAdapter and the annotation will cause it to be decorated and enhanced with the necessary pieces to get the /login path working. For
example, here we simply allow unauthenticated access to the home page at "/" and keep the default for everything else:

@Configuration
public class WebSecurityConfiguration extends WebSecurityConfigurerAdapter {

@Override
public void init(WebSecurity web) {

 web.ignore("/");
 }

@Override
protected void configure(HttpSecurity http) throws Exception {

 http.antMatcher("/**").authorizeRequests().anyRequest().authenticated();
 }

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

52 of 180 05/12/2016 20:33

28.4 Actuator Security
If the Actuator is also in use, you will find:

The management endpoints are secure even if the application endpoints are insecure.
Security events are transformed into AuditEvents and published to the AuditService .
The default user will have the ADMIN role as well as the USER role.

The Actuator security features can be modified using external properties (management.security.*). To override the application access rules add a @Bean of type
WebSecurityConfigurerAdapter and use @Order(SecurityProperties.ACCESS_OVERRIDE_ORDER) if you don’t want to override the actuator access rules,
or @Order(ManagementServerProperties.ACCESS_OVERRIDE_ORDER) if you do want to override the actuator access rules.

29. Working with SQL databases
The Spring Framework provides extensive support for working with SQL databases. From direct JDBC access using JdbcTemplate to complete ‘object relational
mapping’ technologies such as Hibernate. Spring Data provides an additional level of functionality, creating Repository implementations directly from interfaces and
using conventions to generate queries from your method names.

29.1 Configure a DataSource
Java’s javax.sql.DataSource interface provides a standard method of working with database connections. Traditionally a DataSource uses a URL along with some
credentials to establish a database connection.

29.1.1 Embedded Database Support

It’s often convenient to develop applications using an in-memory embedded database. Obviously, in-memory databases do not provide persistent storage; you will need to
populate your database when your application starts and be prepared to throw away data when your application ends.

The ‘How-to’ section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL and Derby databases. You don’t need to provide any connection URLs, simply include a build dependency to the
embedded database that you want to use.

If you are using this feature in your tests, you may notice that the same database is reused by your whole test suite regardless of the number of application
contexts that you use. If you want to make sure that each context has a separate embedded database, you should set
spring.datasource.generate-unique-name to true .

For example, typical POM dependencies would be:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>
<dependency>

<groupId>org.hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<scope>runtime</scope>

</dependency>

You need a dependency on spring-jdbc for an embedded database to be auto-configured. In this example it’s pulled in transitively via
spring-boot-starter-data-jpa .

If, for whatever reason, you do configure the connection URL for an embedded database, care should be taken to ensure that the database’s automatic
shutdown is disabled. If you’re using H2 you should use DB_CLOSE_ON_EXIT=FALSE to do so. If you’re using HSQLDB, you should ensure that
shutdown=true is not used. Disabling the database’s automatic shutdown allows Spring Boot to control when the database is closed, thereby ensuring
that it happens once access to the database is no longer needed.

29.1.2 Connection to a production database

Production database connections can also be auto-configured using a pooling DataSource . Here’s the algorithm for choosing a specific implementation:

We prefer the Tomcat pooling DataSource for its performance and concurrency, so if that is available we always choose it.
Otherwise, if HikariCP is available we will use it.
If neither the Tomcat pooling datasource nor HikariCP are available and if Commons DBCP2 is available we will use it.

If you use the spring-boot-starter-jdbc or spring-boot-starter-data-jpa ‘starters’ you will automatically get a dependency to tomcat-jdbc .

You can bypass that algorithm completely and specify the connection pool to use via the spring.datasource.type property. This is especially
important if you are running your application in a Tomcat container as tomcat-jdbc is provided by default.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

53 of 180 05/12/2016 20:33

Additional connection pools can always be configured manually. If you define your own DataSource bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration properties in spring.datasource.* . For example, you might declare the following section in
application.properties :

spring.datasource.url=jdbc:mysql://localhost/test
spring.datasource.username=dbuser
spring.datasource.password=dbpass
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

You should at least specify the url using the spring.datasource.url property or Spring Boot will attempt to auto-configure an embedded database.

You often won’t need to specify the driver-class-name since Spring boot can deduce it for most databases from the url .

For a pooling DataSource to be created we need to be able to verify that a valid Driver class is available, so we check for that before doing anything.
I.e. if you set spring.datasource.driver-class-name=com.mysql.jdbc.Driver then that class has to be loadable.

See DataSourceProperties for more of the supported options. These are the standard options that work regardless of the actual implementation. It is also possible
to fine-tune implementation-specific settings using their respective prefix (spring.datasource.tomcat.* , spring.datasource.hikari.* , and
spring.datasource.dbcp2.*). Refer to the documentation of the connection pool implementation you are using for more details.

For instance, if you are using the Tomcat connection pool you could customize many additional settings:

Number of ms to wait before throwing an exception if no connection is available.
spring.datasource.tomcat.max-wait=10000

Maximum number of active connections that can be allocated from this pool at the same time.
spring.datasource.tomcat.max-active=50

Validate the connection before borrowing it from the pool.
spring.datasource.tomcat.test-on-borrow=true

29.1.3 Connection to a JNDI DataSource

If you are deploying your Spring Boot application to an Application Server you might want to configure and manage your DataSource using your Application Servers
built-in features and access it using JNDI.

The spring.datasource.jndi-name property can be used as an alternative to the spring.datasource.url , spring.datasource.username and
spring.datasource.password properties to access the DataSource from a specific JNDI location. For example, the following section in
application.properties shows how you can access a JBoss AS defined DataSource :

spring.datasource.jndi-name=java:jboss/datasources/customers

29.2 Using JdbcTemplate
Spring’s JdbcTemplate and NamedParameterJdbcTemplate classes are auto-configured and you can @Autowire them directly into your own beans:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

private final JdbcTemplate jdbcTemplate;

@Autowired
public MyBean(JdbcTemplate jdbcTemplate) {

this.jdbcTemplate = jdbcTemplate;
 }

// ...

}

29.3 JPA and ‘Spring Data’
The Java Persistence API is a standard technology that allows you to ‘map’ objects to relational databases. The spring-boot-starter-data-jpa POM provides a
quick way to get started. It provides the following key dependencies:

Hibernate — One of the most popular JPA implementations.
Spring Data JPA — Makes it easy to implement JPA-based repositories.
Spring ORMs — Core ORM support from the Spring Framework.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

54 of 180 05/12/2016 20:33

We won’t go into too many details of JPA or Spring Data here. You can follow the ‘Accessing Data with JPA’ guide from spring.io and read the Spring Data
JPA and Hibernate reference documentation.

By default, Spring Boot uses Hibernate 5.0.x. However it’s also possible to use 4.3.x or 5.2.x if you wish. Please refer to the Hibernate 4 and Hibernate 5.2
samples to see how to do so.

29.3.1 Entity Classes

Traditionally, JPA ‘Entity’ classes are specified in a persistence.xml file. With Spring Boot this file is not necessary and instead ‘Entity Scanning’ is used. By default
all packages below your main configuration class (the one annotated with @EnableAutoConfiguration or @SpringBootApplication) will be searched.

Any classes annotated with @Entity , @Embeddable or @MappedSuperclass will be considered. A typical entity class would look something like this:

package com.example.myapp.domain;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class City implements Serializable {

@Id
@GeneratedValue
private Long id;

@Column(nullable = false)
private String name;

@Column(nullable = false)
private String state;

// ... additional members, often include @OneToMany mappings

protected City() {
// no-args constructor required by JPA spec
// this one is protected since it shouldn't be used directly

 }

public City(String name, String state) {
this.name = name;
this.country = country;

 }

public String getName() {
return this.name;

 }

public String getState() {
return this.state;

 }

// ... etc

}

You can customize entity scanning locations using the @EntityScan annotation. See the Section 75.4, “Separate @Entity definitions from Spring

configuration” how-to.

29.3.2 Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created automatically from your method names. For example, a
CityRepository interface might declare a findAllByState(String state) method to find all cities in a given state.

For more complex queries you can annotate your method using Spring Data’s Query annotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces. If you are using auto-configuration, repositories will be searched from
the package containing your main configuration class (the one annotated with @EnableAutoConfiguration or @SpringBootApplication) down.

Here is a typical Spring Data repository:

package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

55 of 180 05/12/2016 20:33

We have barely scratched the surface of Spring Data JPA. For complete details check their reference documentation.

29.3.3 Creating and dropping JPA databases

By default, JPA databases will be automatically created only if you use an embedded database (H2, HSQL or Derby). You can explicitly configure JPA settings using
spring.jpa.* properties. For example, to create and drop tables you can add the following to your application.properties .

spring.jpa.hibernate.ddl-auto=create-drop

Hibernate’s own internal property name for this (if you happen to remember it better) is hibernate.hbm2ddl.auto . You can set it, along with other
Hibernate native properties, using spring.jpa.properties.* (the prefix is stripped before adding them to the entity manager). Example:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true

passes hibernate.globally_quoted_identifiers to the Hibernate entity manager.

By default the DDL execution (or validation) is deferred until the ApplicationContext has started. There is also a spring.jpa.generate-ddl flag, but it is not
used if Hibernate autoconfig is active because the ddl-auto settings are more fine-grained.

29.4 Using H2’s web console
The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The console will be auto-configured when the following conditions are
met:

You are developing a web application
com.h2database:h2 is on the classpath
You are using Spring Boot’s developer tools

If you are not using Spring Boot’s developer tools, but would still like to make use of H2’s console, then you can do so by configuring the
spring.h2.console.enabled property with a value of true . The H2 console is only intended for use during development so care should be taken to
ensure that spring.h2.console.enabled is not set to true in production.

29.4.1 Changing the H2 console’s path

By default the console will be available at /h2-console . You can customize the console’s path using the spring.h2.console.path property.

29.4.2 Securing the H2 console

When Spring Security is on the classpath and basic auth is enabled, the H2 console will be automatically secured using basic auth. The following properties can be used
to customize the security configuration:

security.user.role

security.basic.authorize-mode

security.basic.enabled

29.5 Using jOOQ
Java Object Oriented Querying (jOOQ) is a popular product from Data Geekery which generates Java code from your database, and lets you build type safe SQL queries
through its fluent API. Both the commercial and open source editions can be used with Spring Boot.

29.5.1 Code Generation

In order to use jOOQ type-safe queries, you need to generate Java classes from your database schema. You can follow the instructions in the jOOQ user manual. If you
are using the jooq-codegen-maven plugin (and you also use the spring-boot-starter-parent “parent POM”) you can safely omit the plugin’s <version>
tag. You can also use Spring Boot defined version variables (e.g. h2.version) to declare the plugin’s database dependency. Here’s an example:

<plugin>
<groupId>org.jooq</groupId>
<artifactId>jooq-codegen-maven</artifactId>
<executions>

 ...
</executions>
<dependencies>

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>${h2.version}</version>

</dependency>
</dependencies>
<configuration>

<jdbc>
<driver>org.h2.Driver</driver>
<url>jdbc:h2:~/yourdatabase</url>

</jdbc>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

56 of 180 05/12/2016 20:33

<generator>
 ...

</generator>
</configuration>

</plugin>

29.5.2 Using DSLContext

The fluent API offered by jOOQ is initiated via the org.jooq.DSLContext interface. Spring Boot will auto-configure a DSLContext as a Spring Bean and connect it
to your application DataSource . To use the DSLContext you can just @Autowire it:

@Component
public class JooqExample implements CommandLineRunner {

private final DSLContext create;

@Autowired
public JooqExample(DSLContext dslContext) {

this.create = dslContext;
 }

}

The jOOQ manual tends to use a variable named create to hold the DSLContext , we’ve done the same for this example.

You can then use the DSLContext to construct your queries:

public List<GregorianCalendar> authorsBornAfter1980() {
return this.create.selectFrom(AUTHOR)

 .where(AUTHOR.DATE_OF_BIRTH.greaterThan(new GregorianCalendar(1980, 0, 1)))
 .fetch(AUTHOR.DATE_OF_BIRTH);
}

29.5.3 Customizing jOOQ

You can customize the SQL dialect used by jOOQ by setting spring.jooq.sql-dialect in your application.properties . For example, to specify Postgres
you would add:

spring.jooq.sql-dialect=Postgres

More advanced customizations can be achieved by defining your own @Bean definitions which will be used when the jOOQ Configuration is created. You can
define beans for the following jOOQ Types:

ConnectionProvider

TransactionProvider

RecordMapperProvider

RecordListenerProvider

ExecuteListenerProvider

VisitListenerProvider

You can also create your own org.jooq.Configuration @Bean if you want to take complete control of the jOOQ configuration.

30. Working with NoSQL technologies
Spring Data provides additional projects that help you access a variety of NoSQL technologies including MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire,
Couchbase and Cassandra. Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr and Cassandra; you can make use of the other
projects, but you will need to configure them yourself. Refer to the appropriate reference documentation at projects.spring.io/spring-data.

30.1 Redis
Redis is a cache, message broker and richly-featured key-value store. Spring Boot offers basic auto-configuration for the Jedis client library and abstractions on top of it
provided by Spring Data Redis. There is a spring-boot-starter-data-redis ‘Starter’ for collecting the dependencies in a convenient way.

30.1.1 Connecting to Redis

You can inject an auto-configured RedisConnectionFactory , StringRedisTemplate or vanilla RedisTemplate instance as you would any other Spring Bean.
By default the instance will attempt to connect to a Redis server using localhost:6379 :

@Component
public class MyBean {

private StringRedisTemplate template;

@Autowired
public MyBean(StringRedisTemplate template) {

this.template = template;
 }

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

57 of 180 05/12/2016 20:33

// ...

}

If you add a @Bean of your own of any of the auto-configured types it will replace the default (except in the case of RedisTemplate the exclusion is based on the bean
name ‘redisTemplate’ not its type). If commons-pool2 is on the classpath you will get a pooled connection factory by default.

30.2 MongoDB
MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead of traditional table-based relational data. Spring Boot offers several
conveniences for working with MongoDB, including the spring-boot-starter-data-mongodb ‘Starter’.

30.2.1 Connecting to a MongoDB database

You can inject an auto-configured org.springframework.data.mongodb.MongoDbFactory to access Mongo databases. By default the instance will attempt to
connect to a MongoDB server using the URL mongodb://localhost/test :

import org.springframework.data.mongodb.MongoDbFactory;
import com.mongodb.DB;

@Component
public class MyBean {

private final MongoDbFactory mongo;

@Autowired
public MyBean(MongoDbFactory mongo) {

this.mongo = mongo;
 }

// ...

public void example() {
 DB db = mongo.getDb();

// ...
 }

}

You can set spring.data.mongodb.uri property to change the URL and configure additional settings such as the replica set:

spring.data.mongodb.uri=mongodb://user:secret@mongo1.example.com:12345,mongo2.example.com:23456/test

Alternatively, as long as you’re using Mongo 2.x, specify a host / port . For example, you might declare the following in your application.properties :

spring.data.mongodb.host=mongoserver
spring.data.mongodb.port=27017

spring.data.mongodb.host and spring.data.mongodb.port are not supported if you’re using the Mongo 3.0 Java driver. In such cases,
spring.data.mongodb.uri should be used to provide all of the configuration.

If spring.data.mongodb.port is not specified the default of 27017 is used. You could simply delete this line from the sample above.

If you aren’t using Spring Data Mongo you can inject com.mongodb.Mongo beans instead of using MongoDbFactory .

You can also declare your own MongoDbFactory or Mongo bean if you want to take complete control of establishing the MongoDB connection.

30.2.2 MongoTemplate

Spring Data Mongo provides a MongoTemplate class that is very similar in its design to Spring’s JdbcTemplate . As with JdbcTemplate Spring Boot
auto-configures a bean for you to simply inject:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

private final MongoTemplate mongoTemplate;

@Autowired
public MyBean(MongoTemplate mongoTemplate) {

this.mongoTemplate = mongoTemplate;
 }

// ...

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

58 of 180 05/12/2016 20:33

See the MongoOperations Javadoc for complete details.

30.2.3 Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure; so you could take the JPA example from earlier and, assuming that
City is now a Mongo data class rather than a JPA @Entity , it will work in the same way.

package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}

For complete details of Spring Data MongoDB, including its rich object mapping technologies, refer to their reference documentation.

30.2.4 Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application add a dependency on
de.flapdoodle.embed:de.flapdoodle.embed.mongo .

The port that Mongo will listen on can be configured using the spring.data.mongodb.port property. To use a randomly allocated free port use a value of zero. The
MongoClient created by MongoAutoConfiguration will be automatically configured to use the randomly allocated port.

If you have SLF4J on the classpath, output produced by Mongo will be automatically routed to a logger named
org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongo .

You can declare your own IMongodConfig and IRuntimeConfig beans to take control of the Mongo instance’s configuration and logging routing.

30.3 Neo4j
Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes related by first class relationships which is better suited for connected big data than
traditional rdbms approaches. Spring Boot offers several conveniences for working with Neo4j, including the spring-boot-starter-data-neo4j ‘Starter’.

30.3.1 Connecting to a Neo4j database

You can inject an auto-configured Neo4jSession , Session or Neo4jOperations instance as you would any other Spring Bean. By default the instance will
attempt to connect to a Neo4j server using localhost:7474 :

@Component
public class MyBean {

private final Neo4jTemplate neo4jTemplate;

@Autowired
public MyBean(Neo4jTemplate neo4jTemplate) {

this.neo4jTemplate = neo4jTemplate;
 }

// ...

}

You can take full control of the configuration by adding a org.neo4j.ogm.config.Configuration @Bean of your own. Also, adding a @Bean of type
Neo4jOperations disables the auto-configuration.

You can configure the user and credentials to use via the spring.data.neo4j.* properties:

spring.data.neo4j.uri=http://my-server:7474
spring.data.neo4j.username=neo4j
spring.data.neo4j.password=secret

30.3.2 Using the embedded mode

If you add org.neo4j:neo4j-ogm-embedded-driver to the dependencies of your application, Spring Boot will automatically configure an in-process embedded
instance of Neo4j that will not persist any data when your application shuts down. You can explicitly disable that mode using
spring.data.neo4j.embedded.enabled=false . You can also enable persistence for the embedded mode:

spring.data.neo4j.uri=file://var/tmp/graph.db

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

59 of 180 05/12/2016 20:33

30.3.3 Neo4jSession

By default, the lifetime of the session is scoped to the application. If you are running a web application, you can change it so that the session is bound to the thread for the
entire processing of the request (i.e. the "Open Session in View" pattern):

spring.data.neo4j.open-in-view=true

30.3.4 Spring Data Neo4j repositories

Spring Data includes repository support for Neo4j.

In fact, both Spring Data JPA and Spring Data Neo4j share the same common infrastructure; so you could take the JPA example from earlier and, assuming that City is
now a Neo4j OGM @NodeEntity rather than a JPA @Entity , it will work in the same way.

You can customize entity scanning locations using the @EntityScan annotation.

To enable repository support (and optionally support for @Transactional), add the following two annotations to your Spring configuration:

@EnableNeo4jRepositories(basePackages = "com.example.myapp.repository")
@EnableTransactionManagement

30.3.5 Repository example

package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends GraphRepository<City> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountry(String name, String country);

}

For complete details of Spring Data Neo4j, including its rich object mapping technologies, refer to their reference documentation.

30.4 Gemfire
Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire data management platform. There is a
spring-boot-starter-data-gemfire ‘Starter’ for collecting the dependencies in a convenient way. There is currently no auto-configuration support for Gemfire,
but you can enable Spring Data Repositories with a single annotation (@EnableGemfireRepositories).

30.5 Solr
Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library and abstractions on top of it provided by Spring Data Solr. There is
a spring-boot-starter-data-solr ‘Starter’ for collecting the dependencies in a convenient way.

30.5.1 Connecting to Solr

You can inject an auto-configured SolrClient instance as you would any other Spring bean. By default the instance will attempt to connect to a server using
localhost:8983/solr :

@Component
public class MyBean {

private SolrClient solr;

@Autowired
public MyBean(SolrClient solr) {

this.solr = solr;
 }

// ...

}

If you add a @Bean of your own of type SolrClient it will replace the default.

30.5.2 Spring Data Solr repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure; so you could take the JPA example from earlier and, assuming that City is

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

60 of 180 05/12/2016 20:33

now a @SolrDocument class rather than a JPA @Entity , it will work in the same way.

For complete details of Spring Data Solr, refer to their reference documentation.

30.6 Elasticsearch
Elasticsearch is an open source, distributed, real-time search and analytics engine. Spring Boot offers basic auto-configuration for the Elasticsearch and abstractions on
top of it provided by Spring Data Elasticsearch. There is a spring-boot-starter-data-elasticsearch ‘Starter’ for collecting the dependencies in a convenient
way. Spring Boot also supports Jest.

30.6.1 Connecting to Elasticsearch using Jest

If you have Jest on the classpath, you can inject an auto-configured JestClient targeting localhost:9200 by default. You can further tune how the client is
configured:

spring.elasticsearch.jest.uris=http://search.example.com:9200
spring.elasticsearch.jest.read-timeout=10000
spring.elasticsearch.jest.username=user
spring.elasticsearch.jest.password=secret

To take full control over the registration, define a JestClient bean.

30.6.2 Connecting to Elasticsearch using Spring Data

You can inject an auto-configured ElasticsearchTemplate or Elasticsearch Client instance as you would any other Spring Bean. By default the instance will
embed a local in-memory server (a Node in Elasticsearch terms) and use the current working directory as the home directory for the server. In this setup, the first thing
to do is to tell Elasticsearch where to store its files:

spring.data.elasticsearch.properties.path.home=/foo/bar

Alternatively, you can switch to a remote server (i.e. a TransportClient) by setting spring.data.elasticsearch.cluster-nodes to a comma-separated
‘host:port’ list.

spring.data.elasticsearch.cluster-nodes=localhost:9300

@Component
public class MyBean {

private ElasticsearchTemplate template;

@Autowired
public MyBean(ElasticsearchTemplate template) {

this.template = template;
 }

// ...

}

If you add a @Bean of your own of type ElasticsearchTemplate it will replace the default.

30.6.3 Spring Data Elasticsearch repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure; so you could take the JPA example from earlier and, assuming that
City is now an Elasticsearch @Document class rather than a JPA @Entity , it will work in the same way.

For complete details of Spring Data Elasticsearch, refer to their reference documentation.

30.7 Cassandra
Cassandra is an open source, distributed database management system designed to handle large amounts of data across many commodity servers. Spring Boot offers
auto-configuration for Cassandra and abstractions on top of it provided by Spring Data Cassandra. There is a spring-boot-starter-data-cassandra ‘Starter’ for
collecting the dependencies in a convenient way.

30.7.1 Connecting to Cassandra

You can inject an auto-configured CassandraTemplate or a Cassandra Session instance as you would with any other Spring Bean. The
spring.data.cassandra.* properties can be used to customize the connection. Generally you will provide keyspace-name and contact-points properties:

spring.data.cassandra.keyspace-name=mykeyspace
spring.data.cassandra.contact-points=cassandrahost1,cassandrahost2

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

61 of 180 05/12/2016 20:33

public class MyBean {

private CassandraTemplate template;

@Autowired
public MyBean(CassandraTemplate template) {

this.template = template;
 }

// ...

}

If you add a @Bean of your own of type CassandraTemplate it will replace the default.

30.7.2 Spring Data Cassandra repositories

Spring Data includes basic repository support for Cassandra. Currently this is more limited than the JPA repositories discussed earlier, and will need to annotate finder
methods with @Query .

For complete details of Spring Data Cassandra, refer to their reference documentation.

30.8 Couchbase
Couchbase is an open-source, distributed multi-model NoSQL document-oriented database that is optimized for interactive applications. Spring Boot offers
auto-configuration for Couchbase and abstractions on top of it provided by Spring Data Couchbase. There is a spring-boot-starter-data-couchbase ‘Starter’ for
collecting the dependencies in a convenient way.

30.8.1 Connecting to Couchbase

You can very easily get a Bucket and Cluster by adding the Couchbase SDK and some configuration. The spring.couchbase.* properties can be used to
customize the connection. Generally you will provide the bootstrap hosts, bucket name and password:

spring.couchbase.bootstrap-hosts=my-host-1,192.168.1.123
spring.couchbase.bucket.name=my-bucket
spring.couchbase.bucket.password=secret

You need to provide at least the bootstrap host(s), in which case the bucket name is default and the password is the empty String. Alternatively, you can
define your own org.springframework.data.couchbase.config.CouchbaseConfigurer @Bean to take control over the whole configuration.

It is also possible to customize some of the CouchbaseEnvironment settings. For instance the following configuration changes the timeout to use to open a new
Bucket and enables SSL support:

spring.couchbase.env.timeouts.connect=3000
spring.couchbase.env.ssl.key-store=/location/of/keystore.jks
spring.couchbase.env.ssl.key-store-password=secret

Check the spring.couchbase.env.* properties for more details.

30.8.2 Spring Data Couchbase repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase, refer to their reference documentation.

You can inject an auto-configured CouchbaseTemplate instance as you would with any other Spring Bean as long as a default CouchbaseConfigurer is available
(that happens when you enable the couchbase support as explained above). If you want to bypass the auto-configuration for Spring Data Couchbase, provide your own
org.springframework.data.couchbase.config.AbstractCouchbaseDataConfiguration implementation.

@Component
public class MyBean {

private final CouchbaseTemplate template;

@Autowired
public MyBean(CouchbaseTemplate template) {

this.template = template;
 }

// ...

}

If you add a @Bean of your own of type CouchbaseTemplate named couchbaseTemplate it will replace the default.

31. Caching
The Spring Framework provides support for transparently adding caching to an application. At its core, the abstraction applies caching to methods, reducing thus the
number of executions based on the information available in the cache. The caching logic is applied transparently, without any interference to the invoker.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

62 of 180 05/12/2016 20:33

Check the relevant section of the Spring Framework reference for more details.

In a nutshell, adding caching to an operation of your service is as easy as adding the relevant annotation to its method:

import javax.cache.annotation.CacheResult;

import org.springframework.stereotype.Component;

@Component
public class MathService {

@CacheResult
public int computePiDecimal(int i) {

// ...
 }

}

You can either use the standard JSR-107 (JCache) annotations or Spring’s own caching annotations transparently. We strongly advise you however to not
mix and match them.

It is also possible to update or evict data from the cache transparently.

31.1 Supported cache providers
The cache abstraction does not provide an actual store and relies on abstraction materialized by the org.springframework.cache.Cache and
org.springframework.cache.CacheManager interfaces. Spring Boot auto-configures a suitable CacheManager according to the implementation as long as the
caching support is enabled via the @EnableCaching annotation.

If you are using the cache infrastructure with beans that are not interface-based, make sure to enable the proxyTargetClass attribute of
@EnableCaching .

Use the spring-boot-starter-cache ‘Starter’ to quickly add basic caching dependencies. The starter brings spring-context-support : if you
are adding dependencies manually, you must include it if you intend to use the JCache, EhCache 2.x or Guava support.

If you haven’t defined a bean of type CacheManager or a CacheResolver named cacheResolver (see CachingConfigurer), Spring Boot tries to detect the
following providers (in this order):

Generic
JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, etc)
EhCache 2.x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Simple

It is also possible to force the cache provider to use via the spring.cache.type property. Use this property if you need to disable caching altogether in
certain environment (e.g. tests).

If the CacheManager is auto-configured by Spring Boot, you can further tune its configuration before it is fully initialized by exposing a bean implementing the
CacheManagerCustomizer interface. The following sets the cache names to use.

@Bean
public CacheManagerCustomizer<ConcurrentMapCacheManager> cacheManagerCustomizer() {

return new CacheManagerCustomizer<ConcurrentMapCacheManager>() {
@Override
public void customize(ConcurrentMapCacheManager cacheManager) {

 cacheManager.setCacheNames(Arrays.asList("one", "two"));
 }
 };
}

In the example above, a ConcurrentMapCacheManager is expected to be configured. If that is not the case, the customizer won’t be invoked at all. You
can have as many customizers as you want and you can also order them as usual using @Order or Ordered .

31.1.1 Generic

Generic caching is used if the context defines at least one org.springframework.cache.Cache bean, a CacheManager wrapping them is configured.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

63 of 180 05/12/2016 20:33

31.1.2 JCache (JSR-107)

JCache is bootstrapped via the presence of a javax.cache.spi.CachingProvider on the classpath (i.e. a JSR-107 compliant caching library) and the
JCacheCacheManager provided by the spring-boot-starter-cache ‘Starter’. There are various compliant libraries out there and Spring Boot provides
dependency management for Ehcache 3, Hazelcast and Infinispan. Any other compliant library can be added as well.

It might happen that more than one provider is present, in which case the provider must be explicitly specified. Even if the JSR-107 standard does not enforce a
standardized way to define the location of the configuration file, Spring Boot does its best to accommodate with implementation details.

Only necessary if more than one provider is present
spring.cache.jcache.provider=com.acme.MyCachingProvider
spring.cache.jcache.config=classpath:acme.xml

Since a cache library may offer both a native implementation and JSR-107 support Spring Boot will prefer the JSR-107 support so that the same features
are available if you switch to a different JSR-107 implementation.

There are several ways to customize the underlying javax.cache.cacheManager :

Caches can be created on startup via the spring.cache.cache-names property. If a custom javax.cache.configuration.Configuration bean is
defined, it is used to customize them.
org.springframework.boot.autoconfigure.cache.JCacheManagerCustomizer beans are invoked with the reference of the CacheManager for full
customization.

If a standard javax.cache.CacheManager bean is defined, it is wrapped automatically in a org.springframework.cache.CacheManager
implementation that the abstraction expects. No further customization is applied on it.

31.1.3 EhCache 2.x

EhCache 2.x is used if a file named ehcache.xml can be found at the root of the classpath. If EhCache 2.x, the EhCacheCacheManager provided by the
spring-boot-starter-cache ‘Starter’ and such file is present it is used to bootstrap the cache manager. An alternate configuration file can be provided as well
using:

spring.cache.ehcache.config=classpath:config/another-config.xml

31.1.4 Hazelcast

Spring Boot has a general support for Hazelcast. If a HazelcastInstance has been auto-configured, it is automatically wrapped in a CacheManager .

If for some reason you need a different HazelcastInstance for caching, you can request Spring Boot to create a separate one that will be only used by the
CacheManager :

spring.cache.hazelcast.config=classpath:config/my-cache-hazelcast.xml

If a separate HazelcastInstance is created that way, it is not registered in the application context.

31.1.5 Infinispan

Infinispan has no default configuration file location so it must be specified explicitly (or the default bootstrap is used).

spring.cache.infinispan.config=infinispan.xml

Caches can be created on startup via the spring.cache.cache-names property. If a custom ConfigurationBuilder bean is defined, it is used to customize
them.

31.1.6 Couchbase

If the Couchbase java client and the couchbase-spring-cache implementation are available and Couchbase is configured, a CouchbaseCacheManager will be
auto-configured. It is also possible to create additional caches on startup using the spring.cache.cache-names property. These will operate on the Bucket that
was auto-configured. You can also create additional caches on another Bucket using the customizer: assume you need two caches on the "main" Bucket (foo and
bar) and one biz cache with a custom time to live of 2sec on the another Bucket . First, you can create the two first caches simply via configuration:

spring.cache.cache-names=foo,bar

Then define this extra @Configuration to configure the extra Bucket and the biz cache:

@Configuration
public class CouchbaseCacheConfiguration {

private final Cluster cluster;

public CouchbaseCacheConfiguration(Cluster cluster) {
this.cluster = cluster;

 }

@Bean

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

64 of 180 05/12/2016 20:33

public Bucket anotherBucket() {
return this.cluster.openBucket("another", "secret");

 }

@Bean
public CacheManagerCustomizer<CouchbaseCacheManager> cacheManagerCustomizer() {

return c -> {
 c.prepareCache("biz", CacheBuilder.newInstance(anotherBucket())
 .withExpirationInMillis(2000));
 };
 }

}

This sample configuration reuses the Cluster that was created via auto-configuration.

31.1.7 Redis

If Redis is available and configured, the RedisCacheManager is auto-configured. It is also possible to create additional caches on startup using the
spring.cache.cache-names property.

By default, a key prefix is added to prevent that if two separate caches use the same key, Redis would have overlapping keys and be likely to return invalid
values. We strongly recommend to keep this setting enabled if you create your own RedisCacheManager .

31.1.8 Caffeine

Caffeine is a Java 8 rewrite of Guava’s cache that supersede the Guava support. If Caffeine is present, a CaffeineCacheManager (provided by the
spring-boot-starter-cache ‘Starter’) is auto-configured. Caches can be created on startup using the spring.cache.cache-names property and customized
by one of the following (in this order):

A cache spec defined by spring.cache.caffeine.spec1.
A com.github.benmanes.caffeine.cache.CaffeineSpec bean is defined2.
A com.github.benmanes.caffeine.cache.Caffeine bean is defined3.

For instance, the following configuration creates a foo and bar caches with a maximum size of 500 and a time to live of 10 minutes

spring.cache.cache-names=foo,bar
spring.cache.caffeine.spec=maximumSize=500,expireAfterAccess=600s

Besides, if a com.github.benmanes.caffeine.cache.CacheLoader bean is defined, it is automatically associated to the CaffeineCacheManager . Since the
CacheLoader is going to be associated to all caches managed by the cache manager, it must be defined as CacheLoader<Object, Object> . Any other generic
type will be ignored by the auto-configuration.

31.1.9 Simple

If none of these options worked out, a simple implementation using ConcurrentHashMap as cache store is configured. This is the default if no caching library is
present in your application.

31.1.10 None

When @EnableCaching is present in your configuration, a suitable cache configuration is expected as well. If you need to disable caching altogether in certain
environments, force the cache type to none to use a no-op implementation:

spring.cache.type=none

32. Messaging
The Spring Framework provides extensive support for integrating with messaging systems: from simplified use of the JMS API using JmsTemplate to a complete
infrastructure to receive messages asynchronously. Spring AMQP provides a similar feature set for the ‘Advanced Message Queuing Protocol’ and Spring Boot also
provides auto-configuration options for RabbitTemplate and RabbitMQ. There is also support for STOMP messaging natively in Spring WebSocket and Spring Boot
has support for that through starters and a small amount of auto-configuration. Spring Boot also has support for Apache Kafka.

32.1 JMS
The javax.jms.ConnectionFactory interface provides a standard method of creating a javax.jms.Connection for interacting with a JMS broker. Although
Spring needs a ConnectionFactory to work with JMS, you generally won’t need to use it directly yourself and you can instead rely on higher level messaging
abstractions (see the relevant section of the Spring Framework reference documentation for details). Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

32.1.1 ActiveMQ support

Spring Boot can also configure a ConnectionFactory when it detects that ActiveMQ is available on the classpath. If the broker is present, an embedded broker is
started and configured automatically (as long as no broker URL is specified through configuration).

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

65 of 180 05/12/2016 20:33

If you are using spring-boot-starter-activemq the necessary dependencies to connect or embed an ActiveMQ instance are provided, as well as
the Spring infrastructure to integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spring.activemq.* . For example, you might declare the following section in
application.properties :

spring.activemq.broker-url=tcp://192.168.1.210:9876
spring.activemq.user=admin
spring.activemq.password=secret

See ActiveMQProperties for more of the supported options.

By default, ActiveMQ creates a destination if it does not exist yet, so destinations are resolved against their provided names.

32.1.2 Artemis support

Spring Boot can auto-configure a ConnectionFactory when it detects that Artemis is available on the classpath. If the broker is present, an embedded broker is
started and configured automatically (unless the mode property has been explicitly set). The supported modes are: embedded (to make explicit that an embedded
broker is required and should lead to an error if the broker is not available in the classpath), and native to connect to a broker using the netty transport protocol.
When the latter is configured, Spring Boot configures a ConnectionFactory connecting to a broker running on the local machine with the default settings.

If you are using spring-boot-starter-artemis the necessary dependencies to connect to an existing Artemis instance are provided, as well as the
Spring infrastructure to integrate with JMS. Adding org.apache.activemq:artemis-jms-server to your application allows you to use the embedded
mode.

Artemis configuration is controlled by external configuration properties in spring.artemis.* . For example, you might declare the following section in
application.properties :

spring.artemis.mode=native
spring.artemis.host=192.168.1.210
spring.artemis.port=9876
spring.artemis.user=admin
spring.artemis.password=secret

When embedding the broker, you can choose if you want to enable persistence, and the list of destinations that should be made available. These can be specified as a
comma-separated list to create them with the default options; or you can define bean(s) of type
org.apache.activemq.artemis.jms.server.config.JMSQueueConfiguration or
org.apache.activemq.artemis.jms.server.config.TopicConfiguration , for advanced queue and topic configurations respectively.

See ArtemisProperties for more of the supported options.

No JNDI lookup is involved at all and destinations are resolved against their names, either using the ‘name’ attribute in the Artemis configuration or the names provided
through configuration.

32.1.3 Using a JNDI ConnectionFactory

If you are running your application in an Application Server Spring Boot will attempt to locate a JMS ConnectionFactory using JNDI. By default the locations
java:/JmsXA and java:/XAConnectionFactory will be checked. You can use the spring.jms.jndi-name property if you need to specify an alternative
location:

spring.jms.jndi-name=java:/MyConnectionFactory

32.1.4 Sending a message

Spring’s JmsTemplate is auto-configured and you can autowire it directly into your own beans:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

private final JmsTemplate jmsTemplate;

@Autowired
public MyBean(JmsTemplate jmsTemplate) {

this.jmsTemplate = jmsTemplate;
 }

// ...

}

JmsMessagingTemplate can be injected in a similar manner. If a DestinationResolver or MessageConverter beans are defined, they are
associated automatically to the auto-configured JmsTemplate .

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

66 of 180 05/12/2016 20:33

32.1.5 Receiving a message

When the JMS infrastructure is present, any bean can be annotated with @JmsListener to create a listener endpoint. If no JmsListenerContainerFactory has
been defined, a default one is configured automatically. If a DestinationResolver or MessageConverter beans are defined, they are associated automatically to
the default factory.

The default factory is transactional by default. If you are running in an infrastructure where a JtaTransactionManager is present, it will be associated to the listener
container by default. If not, the sessionTransacted flag will be enabled. In that latter scenario, you can associate your local data store transaction to the processing
of an incoming message by adding @Transactional on your listener method (or a delegate thereof). This will make sure that the incoming message is acknowledged
once the local transaction has completed. This also includes sending response messages that have been performed on the same JMS session.

The following component creates a listener endpoint on the someQueue destination:

@Component
public class MyBean {

@JmsListener(destination = "someQueue")
public void processMessage(String content) {

// ...
 }

}

Check the Javadoc of @EnableJms for more details.

If you need to create more JmsListenerContainerFactory instances or if you want to override the default, Spring Boot provides a
DefaultJmsListenerContainerFactoryConfigurer that you can use to initialize a DefaultJmsListenerContainerFactory with the same settings as the
one that is auto-configured.

For instance, the following exposes another factory that uses a specific MessageConverter :

@Configuration
static class JmsConfiguration {

@Bean
public DefaultJmsListenerContainerFactory myFactory(

 DefaultJmsListenerContainerFactoryConfigurer configurer) {
 DefaultJmsListenerContainerFactory factory =

new DefaultJmsListenerContainerFactory();
 configurer.configure(factory, connectionFactory());
 factory.setMessageConverter(myMessageConverter());

return factory;
 }

}

Then you can use in any @JmsListener -annotated method as follows:

@Component
public class MyBean {

 @JmsListener(destination = "someQueue", containerFactory="myFactory")
public void processMessage(String content) {

// ...
 }

}

32.2 AMQP
The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for message-oriented middleware. The Spring AMQP project applies core
Spring concepts to the development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working with AMQP via RabbitMQ, including the
spring-boot-starter-amqp ‘Starter’.

32.2.1 RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable and portable message broker based on the AMQP protocol. Spring uses RabbitMQ to communicate using the AMQP
protocol.

RabbitMQ configuration is controlled by external configuration properties in spring.rabbitmq.* . For example, you might declare the following section in
application.properties :

spring.rabbitmq.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=admin
spring.rabbitmq.password=secret

See RabbitProperties for more of the supported options.

Check Understanding AMQP, the protocol used by RabbitMQ for more details.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

67 of 180 05/12/2016 20:33

32.2.2 Sending a message

Spring’s AmqpTemplate and AmqpAdmin are auto-configured and you can autowire them directly into your own beans:

import org.springframework.amqp.core.AmqpAdmin;
import org.springframework.amqp.core.AmqpTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

private final AmqpAdmin amqpAdmin;
private final AmqpTemplate amqpTemplate;

@Autowired
public MyBean(AmqpAdmin amqpAdmin, AmqpTemplate amqpTemplate) {

this.amqpAdmin = amqpAdmin;
this.amqpTemplate = amqpTemplate;

 }

// ...

}

RabbitMessagingTemplate can be injected in a similar manner. If a MessageConverter bean is defined, it is associated automatically to the
auto-configured AmqpTemplate .

Any org.springframework.amqp.core.Queue that is defined as a bean will be automatically used to declare a corresponding queue on the RabbitMQ instance if
necessary.

You can enable retries on the AmqpTemplate to retry operations, for example in the event the broker connection is lost. Retries are disabled by default.

32.2.3 Receiving a message

When the Rabbit infrastructure is present, any bean can be annotated with @RabbitListener to create a listener endpoint. If no
RabbitListenerContainerFactory has been defined, a default one is configured automatically. If a MessageConverter beans is defined, it is associated
automatically to the default factory.

The following component creates a listener endpoint on the someQueue queue:

@Component
public class MyBean {

@RabbitListener(queues = "someQueue")
public void processMessage(String content) {

// ...
 }

}

Check the Javadoc of @EnableRabbit for more details.

If you need to create more RabbitListenerContainerFactory instances or if you want to override the default, Spring Boot provides a
SimpleRabbitListenerContainerFactoryConfigurer that you can use to initialize a SimpleRabbitListenerContainerFactory with the same settings
as the one that is auto-configured.

For instance, the following exposes another factory that uses a specific MessageConverter :

@Configuration
static class RabbitConfiguration {

@Bean
public SimpleRabbitListenerContainerFactory myFactory(

 SimpleRabbitListenerContainerFactoryConfigurer configurer) {
 SimpleRabbitListenerContainerFactory factory =

new SimpleRabbitListenerContainerFactory();
 configurer.configure(factory, connectionFactory);
 factory.setMessageConverter(myMessageConverter());

return factory;
 }

}

Then you can use in any @RabbitListener -annotated method as follows:

@Component
public class MyBean {

 @RabbitListener(queues = "someQueue", containerFactory="myFactory")
public void processMessage(String content) {

// ...
 }

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

68 of 180 05/12/2016 20:33

}

You can enable retries to handle situations where your listener throws an exception. When retries are exhausted, the message will be rejected and either dropped or
routed to a dead-letter exchange if the broker is configured so. Retries are disabled by default.

Important

If retries are not enabled and the listener throws an exception, by default the delivery will be retried indefinitely. You can modify this behavior in two ways; set
the defaultRequeueRejected property to false and zero re-deliveries will be attempted; or, throw an AmqpRejectAndDontRequeueException
to signal the message should be rejected. This is the mechanism used when retries are enabled and the maximum delivery attempts are reached.

32.3 Apache Kafka Support
Apache Kafka is supported by providing auto-configuration of the spring-kafka project.

Kafka configuration is controlled by external configuration properties in spring.kafka.* . For example, you might declare the following section in
application.properties :

spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=myGroup

See KafkaProperties for more of the supported options.

32.4 Sending a Message
Spring’s KafkaTemplate is auto-configured and you can autowire them directly in your own beans:

@Component
public class MyBean {

private final KafkaTemplate kafkaTemplate;

@Autowired
public MyBean(KafkaTemplate kafkaTemplate) {

this.kafkaTemplate = kafkaTemplate;
}

// ...

}

32.5 Receiving a Message
When the Apache Kafka infrastructure is present, any bean can be annotated with @KafkaListener to create a listener endpoint. If no
KafkaListenerContainerFactory has been defined, a default one is configured automatically with keys defined in spring.kafka.listener.* .

The following component creates a listener endpoint on the someTopic topic:

@Component
public class MyBean {

@KafkaListener(topics = "someTopic")
public void processMessage(String content) {

// ...
 }

}

32.6 Additional Kafka Properties
The properties supported by auto configuration are shown in Appendix A, Common application properties. Note that these properties (hyphenated or camelCase) map
directly to the Apache Kafka dotted properties for the most part, refer to the Apache Kafka documentation for details.

The first few of these properties apply to both producers and consumers, but can be specified at the producer or consumer level if you wish to use different values for
each. Apache Kafka designates properties with an importance: HIGH, MEDIUM and LOW. Spring Boot auto configuration supports all HIGH importance properties, some
selected MEDIUM and LOW, and any that do not have a default value.

Only a subset of the properties supported by Kafka are available via the KafkaProperties class. If you wish to configure the producer or consumer with additional
properties, you can override the producer factory and/or consumer factory bean, adding additional properties, for example:

@Bean
public ProducerFactory<?, ?> kafkaProducerFactory(KafkaProperties properties) {
 Map<String, Object> producerProperties = properties.buildProducerProperties();
 producerProperties.put("some.property", "some.value");

return new DefaultKafkaProducerFactory<Object, Object>(producerProperties);
}

33. Calling REST services

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

69 of 180 05/12/2016 20:33

If you need to call remote REST services from your application, you can use Spring Framework’s RestTemplate class. Since RestTemplate instances often need to
be customized before being used, Spring Boot does not provide any single auto-configured RestTemplate bean. It does, however, auto-configure a
RestTemplateBuilder which can be used to create RestTemplate instances when needed. The auto-configured RestTemplateBuilder will ensure that
sensible HttpMessageConverters are applied to RestTemplate instances.

Here’s a typical example:

@Service
public class MyBean {

private final RestTemplate restTemplate;

public MyBean(RestTemplateBuilder restTemplateBuilder) {
this.restTemplate = restTemplateBuilder.build();

 }

public Details someRestCall(String name) {
return this.restTemplate.getForObject("/{name}/details", Details.class, name);

 }

}

RestTemplateBuilder includes a number of useful methods that can be used to quickly configure a RestTemplate . For example, to add BASIC auth
support you can use builder.basicAuthorization("user", "password").build() .

33.1 RestTemplate customization
There are three main approaches to RestTemplate customization, depending on how broadly you want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured RestTemplateBuilder and then call its methods as required. Each
method call returns a new RestTemplateBuilder instance so the customizations will only affect this use of the builder.

To make an application-wide, additive customization a RestTemplateCustomizer bean can be used. All such beans are automatically registered with the
auto-configured RestTemplateBuilder and will be applied to any templates that are built with it.

Here’s an example of a customizer that configures the use of a proxy for all hosts except 192.168.0.5 :

static class ProxyCustomizer implements RestTemplateCustomizer {

@Override
public void customize(RestTemplate restTemplate) {

 HttpHost proxy = new HttpHost("proxy.example.com");
 HttpClient httpClient = HttpClientBuilder.create()
 .setRoutePlanner(new DefaultProxyRoutePlanner(proxy) {

@Override
public HttpHost determineProxy(HttpHost target,

 HttpRequest request, HttpContext context)
throws HttpException {

if (target.getHostName().equals("192.168.0.5")) {
return null;

 }
return super.determineProxy(target, request, context);

 }

 }).build();
 restTemplate.setRequestFactory(

new HttpComponentsClientHttpRequestFactory(httpClient));
 }

}

Lastly, the most extreme (and rarely used) option is to create your own RestTemplateBuilder bean. This will switch off the auto-configuration of a
RestTemplateBuilder and will prevent any RestTemplateCustomizer beans from being used.

34. Validation
The method validation feature supported by Bean Validation 1.1 is automatically enabled as long as a JSR-303 implementation (e.g. Hibernate validator) is on the
classpath. This allows bean methods to be annotated with javax.validation constraints on their parameters and/or on their return value. Target classes with such
annotated methods need to be annotated with the @Validated annotation at the type level for their methods to be searched for inline constraint annotations.

For instance, the following service triggers the validation of the first argument, making sure its size is between 8 and 10

@Service
@Validated
public class MyBean {

public Archive findByCodeAndAuthor(@Size(min = 8, max = 10) String code,
 Author author) {
 ...
 }

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

70 of 180 05/12/2016 20:33

35. Sending email
The Spring Framework provides an easy abstraction for sending email using the JavaMailSender interface and Spring Boot provides auto-configuration for it as well
as a starter module.

Check the reference documentation for a detailed explanation of how you can use JavaMailSender .

If spring.mail.host and the relevant libraries (as defined by spring-boot-starter-mail) are available, a default JavaMailSender is created if none exists.
The sender can be further customized by configuration items from the spring.mail namespace, see the MailProperties for more details.

36. Distributed Transactions with JTA
Spring Boot supports distributed JTA transactions across multiple XA resources using either an Atomikos or Bitronix embedded transaction manager. JTA transactions are
also supported when deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s JtaTransactionManager will be used to manage transactions. Auto-configured JMS, DataSource and JPA beans will
be upgraded to support XA transactions. You can use standard Spring idioms such as @Transactional to participate in a distributed transaction. If you are within a
JTA environment and still want to use local transactions you can set the spring.jta.enabled property to false to disable the JTA auto-configuration.

36.1 Using an Atomikos transaction manager
Atomikos is a popular open source transaction manager which can be embedded into your Spring Boot application. You can use the
spring-boot-starter-jta-atomikos Starter to pull in the appropriate Atomikos libraries. Spring Boot will auto-configure Atomikos and ensure that appropriate
depends-on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default Atomikos transaction logs will be written to a transaction-logs directory in your application home directory (the directory in which your application jar file
resides). You can customize this directory by setting a spring.jta.log-dir property in your application.properties file. Properties starting
spring.jta.atomikos.properties can also be used to customize the Atomikos UserTransactionServiceImp . See the AtomikosProperties Javadoc
for complete details.

To ensure that multiple transaction managers can safely coordinate the same resource managers, each Atomikos instance must be configured with a
unique ID. By default this ID is the IP address of the machine on which Atomikos is running. To ensure uniqueness in production, you should configure the
spring.jta.transaction-manager-id property with a different value for each instance of your application.

36.2 Using a Bitronix transaction manager
Bitronix is popular open source JTA transaction manager implementation. You can use the spring-boot-starter-jta-bitronix starter to add the appropriate
Bitronix dependencies to your project. As with Atomikos, Spring Boot will automatically configure Bitronix and post-process your beans to ensure that startup and
shutdown ordering is correct.

By default Bitronix transaction log files (part1.btm and part2.btm) will be written to a transaction-logs directory in your application home directory. You can
customize this directory by using the spring.jta.log-dir property. Properties starting spring.jta.bitronix.properties are also bound to the
bitronix.tm.Configuration bean, allowing for complete customization. See the Bitronix documentation for details.

To ensure that multiple transaction managers can safely coordinate the same resource managers, each Bitronix instance must be configured with a unique
ID. By default this ID is the IP address of the machine on which Bitronix is running. To ensure uniqueness in production, you should configure the
spring.jta.transaction-manager-id property with a different value for each instance of your application.

36.3 Using a Narayana transaction manager
Narayana is popular open source JTA transaction manager implementation supported by JBoss. You can use the spring-boot-starter-jta-narayana starter to
add the appropriate Narayana dependencies to your project. As with Atomikos and Bitronix, Spring Boot will automatically configure Narayana and post-process your
beans to ensure that startup and shutdown ordering is correct.

By default Narayana transaction logs will be written to a transaction-logs directory in your application home directory (the directory in which your application jar file
resides). You can customize this directory by setting a spring.jta.log-dir property in your application.properties file. Properties starting
spring.jta.narayana.properties can also be used to customize the Narayana configuration. See the NarayanaProperties Javadoc for complete details.

To ensure that multiple transaction managers can safely coordinate the same resource managers, each Narayana instance must be configured with a
unique ID. By default this ID is set to 1 . To ensure uniqueness in production, you should configure the spring.jta.transaction-manager-id
property with a different value for each instance of your application.

36.4 Using a Java EE managed transaction manager
If you are packaging your Spring Boot application as a war or ear file and deploying it to a Java EE application server, you can use your application servers built-in
transaction manager. Spring Boot will attempt to auto-configure a transaction manager by looking at common JNDI locations (java:comp/UserTransaction ,
java:comp/TransactionManager etc). If you are using a transaction service provided by your application server, you will generally also want to ensure that all
resources are managed by the server and exposed over JNDI. Spring Boot will attempt to auto-configure JMS by looking for a ConnectionFactory at the JNDI path

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

71 of 180 05/12/2016 20:33

36.5 Mixing XA and non-XA JMS connections
When using JTA, the primary JMS ConnectionFactory bean will be XA aware and participate in distributed transactions. In some situations you might want to
process certain JMS messages using a non-XA ConnectionFactory . For example, your JMS processing logic might take longer than the XA timeout.

If you want to use a non-XA ConnectionFactory you can inject the nonXaJmsConnectionFactory bean rather than the @Primary jmsConnectionFactory

bean. For consistency the jmsConnectionFactory bean is also provided using the bean alias xaJmsConnectionFactory .

For example:

// Inject the primary (XA aware) ConnectionFactory
@Autowired
private ConnectionFactory defaultConnectionFactory;

// Inject the XA aware ConnectionFactory (uses the alias and injects the same as above)
@Autowired
@Qualifier("xaJmsConnectionFactory")
private ConnectionFactory xaConnectionFactory;

// Inject the non-XA aware ConnectionFactory
@Autowired
@Qualifier("nonXaJmsConnectionFactory")
private ConnectionFactory nonXaConnectionFactory;

36.6 Supporting an alternative embedded transaction manager
The XAConnectionFactoryWrapper and XADataSourceWrapper interfaces can be used to support alternative embedded transaction managers. The interfaces
are responsible for wrapping XAConnectionFactory and XADataSource beans and exposing them as regular ConnectionFactory and DataSource beans
which will transparently enroll in the distributed transaction. DataSource and JMS auto-configuration will use JTA variants as long as you have a
JtaTransactionManager bean and appropriate XA wrapper beans registered within your ApplicationContext .

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples of how to write XA wrappers.

37. Hazelcast
If hazelcast is on the classpath, Spring Boot will auto-configure an HazelcastInstance that you can inject in your application. The HazelcastInstance is only
created if a configuration is found.

You can define a com.hazelcast.config.Config bean and we’ll use that. If your configuration defines an instance name, we’ll try to locate an existing instance
rather than creating a new one.

You could also specify the hazelcast.xml configuration file to use via configuration:

spring.hazelcast.config=classpath:config/my-hazelcast.xml

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations, that is hazelcast.xml in the working directory or at the root of the
classpath. We also check if the hazelcast.config system property is set. Check the Hazelcast documentation for more details.

Spring Boot also has an explicit caching support for Hazelcast. The HazelcastInstance is automatically wrapped in a CacheManager
implementation if caching is enabled.

38. Spring Integration
Spring Boot offers several conveniences for working with Spring Integration, including the spring-boot-starter-integration ‘Starter’. Spring Integration provides
abstractions over messaging and also other transports such as HTTP, TCP etc. If Spring Integration is available on your classpath it will be initialized through the
@EnableIntegration annotation. Message processing statistics will be published over JMX if 'spring-integration-jmx' is also on the classpath. See the
IntegrationAutoConfiguration class for more details.

39. Spring Session
Spring Boot provides Spring Session auto-configuration for a wide range of stores:

JDBC
MongoDB
Redis
Hazelcast
HashMap

If Spring Session is available, you only need to choose the StoreType that you wish to use to store the sessions. For instance to use JDBC as backend store, you’d
configure your application as follows:

spring.session.store-type=jdbc

For backward compatibility if Redis is available Spring Session will be automatically configured to use Redis.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

72 of 180 05/12/2016 20:33

You can disable Spring Session by setting the store-type to none .

Each store has specific additional settings. For instance it is possible to customize the name of the table for the jdbc store:

spring.session.jdbc.table-name=SESSIONS

40. Monitoring and management over JMX
Java Management Extensions (JMX) provide a standard mechanism to monitor and manage applications. By default Spring Boot will create an MBeanServer with bean
id ‘mbeanServer’ and expose any of your beans that are annotated with Spring JMX annotations (@ManagedResource , @ManagedAttribute ,
@ManagedOperation).

See the JmxAutoConfiguration class for more details.

41. Testing
Spring Boot provides a number of utilities and annotations to help when testing your application. Test support is provided by two modules; spring-boot-test
contains core items, and spring-boot-test-autoconfigure supports auto-configuration for tests.

Most developers will just use the spring-boot-starter-test ‘Starter’ which imports both Spring Boot test modules as well has JUnit, AssertJ, Hamcrest and a
number of other useful libraries.

41.1 Test scope dependencies
If you use the spring-boot-starter-test ‘Starter’ (in the test scope), you will find the following provided libraries:

JUnit — The de-facto standard for unit testing Java applications.
Spring Test & Spring Boot Test — Utilities and integration test support for Spring Boot applications.
AssertJ — A fluent assertion library.
Hamcrest — A library of matcher objects (also known as constraints or predicates).
Mockito — A Java mocking framework.
JSONassert — An assertion library for JSON.
JsonPath — XPath for JSON.

These are common libraries that we generally find useful when writing tests. You are free to add additional test dependencies of your own if these don’t suit your needs.

41.2 Testing Spring applications
One of the major advantages of dependency injection is that it should make your code easier to unit test. You can simply instantiate objects using the new operator
without even involving Spring. You can also use mock objects instead of real dependencies.

Often you need to move beyond ‘unit testing’ and start ‘integration testing’ (with a Spring ApplicationContext actually involved in the process). It’s useful to be able
to perform integration testing without requiring deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for just such integration testing. You can declare a dependency directly to
org.springframework:spring-test or use the spring-boot-starter-test ‘Starter’ to pull it in transitively.

If you have not used the spring-test module before you should start by reading the relevant section of the Spring Framework reference documentation.

41.3 Testing Spring Boot applications
A Spring Boot application is just a Spring ApplicationContext , so nothing very special has to be done to test it beyond what you would normally do with a vanilla
Spring context. One thing to watch out for though is that the external properties, logging and other features of Spring Boot are only installed in the context by default if you
use SpringApplication to create it.

Spring Boot provides a @SpringBootTest annotation which can be used as an alternative to the standard spring-test @ContextConfiguration annotation
when you need Spring Boot features. The annotation works by creating the ApplicationContext used in your tests via SpringApplication .

You can use the webEnvironment attribute of @SpringBootTest to further refine how your tests will run:

MOCK — Loads a WebApplicationContext and provides a mock servlet environment. Embedded servlet containers are not started when using this annotation.
If servlet APIs are not on your classpath this mode will transparently fallback to creating a regular non-web ApplicationContext . Can be used in conjunction
with @AutoConfigureMockMvc for MockMvc -based testing of your application.
RANDOM_PORT — Loads an EmbeddedWebApplicationContext and provides a real servlet environment. Embedded servlet containers are started and listening
on a random port.
DEFINED_PORT — Loads an EmbeddedWebApplicationContext and provides a real servlet environment. Embedded servlet containers are started and
listening on a defined port (i.e from your application.properties or on the default port 8080).
NONE — Loads an ApplicationContext using SpringApplication but does not provide any servlet environment (mock or otherwise).

In addition to @SpringBootTest a number of other annotations are also provided for testing more specific slices of an application. See below for details.

Don’t forget to also add @RunWith(SpringRunner.class) to your test, otherwise the annotations will be ignored.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

73 of 180 05/12/2016 20:33

41.3.1 Detecting test configuration

If you’re familiar with the Spring Test Framework, you may be used to using @ContextConfiguration(classes=…) in order to specify which Spring
@Configuration to load. Alternatively, you might have often used nested @Configuration classes within your test.

When testing Spring Boot applications this is often not required. Spring Boot’s @*Test annotations will search for your primary configuration automatically whenever you
don’t explicitly define one.

The search algorithm works up from the package that contains the test until it finds a @SpringBootApplication or @SpringBootConfiguration annotated
class. As long as you’ve structured your code in a sensible way your main configuration is usually found.

If you want to customize the primary configuration, you can use a nested @TestConfiguration class. Unlike a nested @Configuration class which would be used
instead of a your application’s primary configuration, a nested @TestConfiguration class will be used in addition to your application’s primary configuration.

Spring’s test framework will cache application contexts between tests. Therefore, as long as your tests share the same configuration (no matter how it’s
discovered), the potentially time consuming process of loading the context will only happen once.

41.3.2 Excluding test configuration

If your application uses component scanning, for example if you use @SpringBootApplication or @ComponentScan , you may find components or configurations
created only for specific tests accidentally get picked up everywhere.

To help prevent this, Spring Boot provides @TestComponent and @TestConfiguration annotations that can be used on classes in src/test/java to indicate
that they should not be picked up by scanning.

@TestComponent and @TestConfiguration are only needed on top level classes. If you define @Configuration or @Component as inner-
classes within a test (any class that has @Test methods or @RunWith), they will be automatically filtered.

If you directly use @ComponentScan (i.e. not via @SpringBootApplication) you will need to register the TypeExcludeFilter with it. See the
Javadoc for details.

41.3.3 Working with random ports

If you need to start a full running server for tests, we recommend that you use random ports. If you use
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT) an available port will be picked at random each time your test runs.

The @LocalServerPort annotation can be used to inject the actual port used into your test. For convenience, tests that need to make REST calls to the started server
can additionally @Autowire a TestRestTemplate which will resolve relative links to the running server.

import org.junit.Test;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.boot.test.web.client.TestRestTemplate;
import org.springframework.test.context.junit4.SpringRunner;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
public class RandomPortExampleTests {

@Autowired
private TestRestTemplate restTemplate;

@Test
public void exampleTest() {

String body = this.restTemplate.getForObject("/", String.class);
assertThat(body).isEqualTo("Hello World");

}

}

41.3.4 Mocking and spying beans

It’s sometimes necessary to mock certain components within your application context when running tests. For example, you may have a facade over some remote service
that’s unavailable during development. Mocking can also be useful when you want to simulate failures that might be hard to trigger in a real environment.

Spring Boot includes a @MockBean annotation that can be used to define a Mockito mock for a bean inside your ApplicationContext . You can use the annotation
to add new beans, or replace a single existing bean definition. The annotation can be used directly on test classes, on fields within your test, or on @Configuration
classes and fields. When used on a field, the instance of the created mock will also be injected. Mock beans are automatically reset after each test method.

Here’s a typical example where we replace an existing RemoteService bean with a mock implementation:

import org.junit.*;
import org.junit.runner.*;

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

74 of 180 05/12/2016 20:33

import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.context.*;
import org.springframework.boot.test.mock.mockito.*;
import org.springframework.test.context.junit4.*;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyTests {

@MockBean
private RemoteService remoteService;

@Autowired
private Reverser reverser;

@Test
public void exampleTest() {

// RemoteService has been injected into the reverser bean
 given(this.remoteService.someCall()).willReturn("mock");
 String reverse = reverser.reverseSomeCall();
 assertThat(reverse).isEqualTo("kcom");
 }

}

Additionally you can also use @SpyBean to wrap any existing bean with a Mockito spy . See the Javadoc for full details.

41.3.5 Auto-configured tests

Spring Boot’s auto-configuration system works well for applications, but can sometimes be a little too much for tests. It’s often helpful to load only the parts of the
configuration that are required to test a ‘slice’ of your application. For example, you might want to test that Spring MVC controllers are mapping URLs correctly, and you
don’t want to involve database calls in those tests; or you might be wanting to test JPA entities, and you’re not interested in web layer when those tests run.

The spring-boot-test-autoconfigure module includes a number of annotations that can be used to automatically configure such ‘slices’. Each of them works in
a similar way, providing a @…Test annotation that loads the ApplicationContext and one or more @AutoConfigure… annotations that can be used to customize
auto-configuration settings.

It’s also possible to use the @AutoConfigure… annotations with the standard @SpringBootTest annotation. You can use this combination if you’re not
interested in ‘slicing’ your application but you want some of the auto-configured test beans.

41.3.6 Auto-configured JSON tests

To test that Object JSON serialization and deserialization is working as expected you can use the @JsonTest annotation. @JsonTest will auto-configure Jackson
ObjectMapper , any @JsonComponent beans and any Jackson Modules . It also configures Gson if you happen to be using that instead of, or as well as, Jackson.
If you need to configure elements of the auto-configuration you can use the @AutoConfigureJsonTesters annotation.

Spring Boot includes AssertJ based helpers that work with the JSONassert and JsonPath libraries to check that JSON is as expected. The JacksonTester ,
GsonTester and BasicJsonTester classes can be used for Jackson, Gson and Strings respectively. Any helper fields on the test class can be @Autowired when
using @JsonTest .

import org.junit.*;
import org.junit.runner.*;
import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.autoconfigure.json.*;
import org.springframework.boot.test.context.*;
import org.springframework.boot.test.json.*;
import org.springframework.test.context.junit4.*;

import static org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)
@JsonTest
public class MyJsonTests {

@Autowired
private JacksonTester<VehicleDetails> json;

@Test
public void testSerialize() throws Exception {

 VehicleDetails details = new VehicleDetails("Honda", "Civic");
// Assert against a `.json` file in the same package as the test

 assertThat(this.json.write(details)).isEqualToJson("expected.json");
// Or use JSON path based assertions

 assertThat(this.json.write(details)).hasJsonPathStringValue("@.make");
 assertThat(this.json.write(details)).extractingJsonPathStringValue("@.make")
 .isEqualTo("Honda");
 }

@Test
public void testDeserialize() throws Exception {

 String content = "{\"make\":\"Ford\",\"model\":\"Focus\"}";
 assertThat(this.json.parse(content))

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

75 of 180 05/12/2016 20:33

 .isEqualTo(new VehicleDetails("Ford", "Focus"));
 assertThat(this.json.parseObject(content).getMake()).isEqualTo("Ford");
 }

}

JSON helper classes can also be used directly in standard unit tests. Simply call the initFields method of the helper in your @Before method if you
aren’t using @JsonTest .

A list of the auto-configuration that is enabled by @JsonTest can be found in the appendix.

41.3.7 Auto-configured Spring MVC tests

To test Spring MVC controllers are working as expected you can use the @WebMvcTest annotation. @WebMvcTest will auto-configure the Spring MVC infrastructure
and limit scanned beans to @Controller , @ControllerAdvice , @JsonComponent , Filter , WebMvcConfigurer and
HandlerMethodArgumentResolver . Regular @Component beans will not be scanned when using this annotation.

Often @WebMvcTest will be limited to a single controller and used in combination with @MockBean to provide mock implementations for required collaborators.

@WebMvcTest also auto-configures MockMvc . Mock MVC offers a powerful way to quickly test MVC controllers without needing to start a full HTTP server.

You can also auto-configure MockMvc in a non- @WebMvcTest (e.g. SpringBootTest) by annotating it with @AutoConfigureMockMvc .

import org.junit.*;
import org.junit.runner.*;
import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.autoconfigure.web.servlet.*;
import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.BDDMockito.*;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

@RunWith(SpringRunner.class)
@WebMvcTest(UserVehicleController.class)
public class MyControllerTests {

@Autowired
private MockMvc mvc;

@MockBean
private UserVehicleService userVehicleService;

@Test
public void testExample() throws Exception {

 given(this.userVehicleService.getVehicleDetails("sboot"))
 .willReturn(new VehicleDetails("Honda", "Civic"));

this.mvc.perform(get("/sboot/vehicle").accept(MediaType.TEXT_PLAIN))
 .andExpect(status().isOk()).andExpect(content().string("Honda Civic"));
 }

}

If you need to configure elements of the auto-configuration (for example when servlet filters should be applied) you can use attributes in the
@AutoConfigureMockMvc annotation.

If you use HtmlUnit or Selenium, auto-configuration will also provide a WebClient bean and/or a WebDriver bean. Here is an example that uses HtmlUnit:

import com.gargoylesoftware.htmlunit.*;
import org.junit.*;
import org.junit.runner.*;
import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.autoconfigure.web.servlet.*;
import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)
@WebMvcTest(UserVehicleController.class)
public class MyHtmlUnitTests {

@Autowired
private WebClient webClient;

@MockBean
private UserVehicleService userVehicleService;

@Test
public void testExample() throws Exception {

 given(this.userVehicleService.getVehicleDetails("sboot"))

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

76 of 180 05/12/2016 20:33

 HtmlPage page = this.webClient.getPage("/sboot/vehicle.html");
 assertThat(page.getBody().getTextContent()).isEqualTo("Honda Civic");
 }

}

By default Spring Boot will put WebDriver beans in a special “scope” to ensure that the driver is quit after each test, and that a new instance is injected. If
you don’t want this behavior you can add @Scope("singleton") to your WebDriver @Bean definition.

A list of the auto-configuration that is enabled by @WebMvcTest can be found in the appendix.

41.3.8 Auto-configured Data JPA tests

@DataJpaTest can be used if you want to test JPA applications. By default it will configure an in-memory embedded database, scan for @Entity classes and
configure Spring Data JPA repositories. Regular @Component beans will not be loaded into the ApplicationContext .

Data JPA tests are transactional and rollback at the end of each test by default, see the relevant section in the Spring Reference Documentation for more details. If that’s
not what you want, you can disable transaction management for a test or for the whole class as follows:

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)
@DataJpaTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
public class ExampleNonTransactionalTests {

}

Data JPA tests may also inject a TestEntityManager bean which provides an alternative to the standard JPA EntityManager specifically designed for tests. If you
want to use TestEntityManager outside of @DataJpaTests you can also use the @AutoConfigureTestEntityManager annotation. A JdbcTemplate is
also available if you need that.

import org.junit.*;
import org.junit.runner.*;
import org.springframework.boot.test.autoconfigure.orm.jpa.*;

import static org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)
@DataJpaTest
public class ExampleRepositoryTests {

@Autowired
private TestEntityManager entityManager;

@Autowired
private UserRepository repository;

@Test
public void testExample() throws Exception {

this.entityManager.persist(new User("sboot", "1234"));
 User user = this.repository.findByUsername("sboot");
 assertThat(user.getUsername()).isEqualTo("sboot");
 assertThat(user.getVin()).isEqualTo("1234");
 }

}

In-memory embedded databases generally work well for tests since they are fast and don’t require any developer installation. If, however, you prefer to run tests against a
real database you can use the @AutoConfigureTestDatabase annotation:

@RunWith(SpringRunner.class)
@DataJpaTest
@AutoConfigureTestDatabase(replace=Replace.NONE)
public class ExampleRepositoryTests {

// ...

}

A list of the auto-configuration that is enabled by @DataJpaTest can be found in the appendix.

41.3.9 Auto-configured JDBC tests

@JdbcTest is similar to @DataJpaTest but for pure jdbc-related tests. By default it will also configure an in-memory embedded database and a JdbcTemplate .
Regular @Component beans will not be loaded into the ApplicationContext .

JDBC tests are transactional and rollback at the end of each test by default, see the relevant section in the Spring Reference Documentation for more details. If that’s not
what you want, you can disable transaction management for a test or for the whole class as follows:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

77 of 180 05/12/2016 20:33

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.autoconfigure.jdbc.JdbcTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)
@JdbcTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
public class ExampleNonTransactionalTests {

}

If you prefer your test to run against a real database, you can use the @AutoConfigureTestDatabase annotation the same way as for DataJpaTest .

A list of the auto-configuration that is enabled by @JdbcTest can be found in the appendix.

41.3.10 Auto-configured REST clients

The @RestClientTest annotation can be used if you want to test REST clients. By default it will auto-configure Jackson and GSON support, configure a
RestTemplateBuilder and add support for MockRestServiceServer . The specific beans that you want to test should be specified using value or
components attribute of @RestClientTest :

@RunWith(SpringRunner.class)
@RestClientTest(RemoteVehicleDetailsService.class)
public class ExampleRestClientTest {

@Autowired
private RemoteVehicleDetailsService service;

@Autowired
private MockRestServiceServer server;

@Test
public void getVehicleDetailsWhenResultIsSuccessShouldReturnDetails()

throws Exception {
this.server.expect(requestTo("/greet/details"))

 .andRespond(withSuccess("hello", MediaType.TEXT_PLAIN));
 String greeting = this.service.callRestService();
 assertThat(greeting).isEqualTo("hello");
 }

}

A list of the auto-configuration that is enabled by @RestClientTest can be found in the appendix.

41.3.11 Auto-configured Spring REST Docs tests

The @AutoConfigureRestDocs annotation can be used if you want to use Spring REST Docs in your tests. It will automatically configure MockMvc to use Spring
REST Docs and remove the need for Spring REST Docs' JUnit rule.

import org.junit.Test;
import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

import static org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.document;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

@RunWith(SpringRunner.class)
@WebMvcTest(UserController.class)
@AutoConfigureRestDocs("target/generated-snippets")
public class UserDocumentationTests {

@Autowired
private MockMvc mvc;

@Test
public void listUsers() throws Exception {

this.mvc.perform(get("/users").accept(MediaType.TEXT_PLAIN))
 .andExpect(status().isOk())
 .andDo(document("list-users"));
 }

}

In addition to configuring the output directory, @AutoConfigureRestDocs can also configure the host, scheme, and port that will appear in any documented URIs. If
you require more control over Spring REST Docs' configuration a RestDocsMockMvcConfigurationCustomizer bean can be used:

@TestConfiguration
static class CustomizationConfiguration

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

78 of 180 05/12/2016 20:33

implements RestDocsMockMvcConfigurationCustomizer {

@Override
public void customize(MockMvcRestDocumentationConfigurer configurer) {

 configurer.snippets().withTemplateFormat(TemplateFormats.markdown());
 }

}

If you want to make use of Spring REST Docs' support for a parameterized output directory, you can create a RestDocumentationResultHandler bean. The
auto-configuration will call alwaysDo with this result handler, thereby causing each MockMvc call to automatically generate the default snippets:

@TestConfiguration
static class ResultHandlerConfiguration {

@Bean
public RestDocumentationResultHandler restDocumentation() {

return MockMvcRestDocumentation.document("{method-name}");
 }

}

41.3.12 Using Spock to test Spring Boot applications

If you wish to use Spock to test a Spring Boot application you should add a dependency on Spock’s spock-spring module to your application’s build.
spock-spring integrates Spring’s test framework into Spock. Exactly how you can use Spock to test a Spring Boot application depends on the version of Spock that
you are using.

Spring Boot provides dependency management for Spock 1.0. If you wish to use Spock 1.1 you should override the spock.version property in your
build.gradle or pom.xml file.

When using Spock 1.1, the annotations described above can only be used and you can annotate your Specification with @SpringBootTest to suit the needs of
your tests.

When using Spock 1.0, @SpringBootTest will not work for a web project. You need to use @SpringApplicationConfiguration and
@WebIntegrationTest(randomPort = true) . Being unable to use @SpringBootTest means that you also lose the auto-configured TestRestTemplate
bean. You can create an equivalent bean yourself using the following configuration:

@Configuration
static class TestRestTemplateConfiguration {

@Bean
public TestRestTemplate testRestTemplate(

 ObjectProvider<RestTemplateBuilder> builderProvider,
 Environment environment) {
 RestTemplateBuilder builder = builderProvider.getIfAvailable();
 TestRestTemplate template = builder == null ? new TestRestTemplate()
 : new TestRestTemplate(builder.build());
 template.setUriTemplateHandler(new LocalHostUriTemplateHandler(environment));

return template;
 }

}

41.4 Test utilities
A few test utility classes are packaged as part of spring-boot that are generally useful when testing your application.

41.4.1 ConfigFileApplicationContextInitializer

ConfigFileApplicationContextInitializer is an ApplicationContextInitializer that can apply to your tests to load Spring Boot
application.properties files. You can use this when you don’t need the full features provided by @SpringBootTest .

@ContextConfiguration(classes = Config.class,
 initializers = ConfigFileApplicationContextInitializer.class)

Using ConfigFileApplicationContextInitializer alone won’t provide support for @Value("${…}") injection. Its only job is to ensure that
application.properties files are loaded into Spring’s Environment . For @Value support you need to either additionally configure a
PropertySourcesPlaceholderConfigurer or use @SpringBootTest where one will be auto-configured for you.

41.4.2 EnvironmentTestUtils

EnvironmentTestUtils allows you to quickly add properties to a ConfigurableEnvironment or ConfigurableApplicationContext . Simply call it with
key=value strings:

EnvironmentTestUtils.addEnvironment(env, "org=Spring", "name=Boot");

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

79 of 180 05/12/2016 20:33

41.4.3 OutputCapture

OutputCapture is a JUnit Rule that you can use to capture System.out and System.err output. Simply declare the capture as a @Rule then use
toString() for assertions:

import org.junit.Rule;
import org.junit.Test;
import org.springframework.boot.test.rule.OutputCapture;

import static org.hamcrest.Matchers.*;
import static org.junit.Assert.*;

public class MyTest {

@Rule
public OutputCapture capture = new OutputCapture();

@Test
public void testName() throws Exception {

System.out.println("Hello World!");
assertThat(capture.toString(), containsString("World"));

}

}

41.4.4 TestRestTemplate

TestRestTemplate is a convenience alternative to Spring’s RestTemplate that is useful in integration tests. You can get a vanilla template or one that sends Basic
HTTP authentication (with a username and password). In either case the template will behave in a test-friendly way: not following redirects (so you can assert the
response location), ignoring cookies (so the template is stateless), and not throwing exceptions on server-side errors. It is recommended, but not mandatory, to use
Apache HTTP Client (version 4.3.2 or better), and if you have that on your classpath the TestRestTemplate will respond by configuring the client appropriately.

public class MyTest {

private TestRestTemplate template = new TestRestTemplate();

@Test
public void testRequest() throws Exception {

HttpHeaders headers = template.getForEntity("http://myhost.com", String.class).getHeaders();
assertThat(headers.getLocation().toString(), containsString("myotherhost"));

}

}

If you are using the @SpringBootTest annotation with WebEnvironment.RANDOM_PORT or WebEnvironment.DEFINED_PORT , you can just inject a fully
configured TestRestTemplate and start using it. If necessary, additional customizations can be applied via the RestTemplateBuilder bean:

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyTest {

@Autowired
private TestRestTemplate template;

@Test
public void testRequest() throws Exception {

HttpHeaders headers = template.getForEntity("http://myhost.com", String.class).getHeaders();
assertThat(headers.getLocation().toString(), containsString("myotherhost"));

}

@TestConfiguration
static class Config {

@Bean
public RestTemplateBuilder restTemplateBuilder() {

return new RestTemplateBuilder()
.additionalMessageConverters(...)
.customizers(...);

}

}

}

42. WebSockets
Spring Boot provides WebSockets auto-configuration for embedded Tomcat (8 and 7), Jetty 9 and Undertow. If you’re deploying a war file to a standalone container,
Spring Boot assumes that the container will be responsible for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support that can be easily accessed via the spring-boot-starter-websocket module.

43. Web Services
Spring Boot provides Web Services auto-configuration so that all is required is defining your Endpoints .

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

80 of 180 05/12/2016 20:33

The Spring Web Services features can be easily accessed via the spring-boot-starter-webservices module.

44. Creating your own auto-configuration
If you work in a company that develops shared libraries, or if you work on an open-source or commercial library, you might want to develop your own auto-configuration.
Auto-configuration classes can be bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a "starter" that provides the auto-configuration code as well as the typical libraries that you would use with it. We will first cover
what you need to know to build your own auto-configuration and we will move on to the typical steps required to create a custom starter.

A demo project is available to showcase how you can create a starter step by step.

44.1 Understanding auto-configured beans
Under the hood, auto-configuration is implemented with standard @Configuration classes. Additional @Conditional annotations are used to constrain when the
auto-configuration should apply. Usually auto-configuration classes use @ConditionalOnClass and @ConditionalOnMissingBean annotations. This ensures
that auto-configuration only applies when relevant classes are found and when you have not declared your own @Configuration .

You can browse the source code of spring-boot-autoconfigure to see the @Configuration classes that we provide (see the
META-INF/spring.factories file).

44.2 Locating auto-configuration candidates
Spring Boot checks for the presence of a META-INF/spring.factories file within your published jar. The file should list your configuration classes under the
EnableAutoConfiguration key.

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\
com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration

You can use the @AutoConfigureAfter or @AutoConfigureBefore annotations if your configuration needs to be applied in a specific order. For example, if you
provide web-specific configuration, your class may need to be applied after WebMvcAutoConfiguration .

If you want to order certain auto-configurations that shouldn’t have any direct knowledge of each other, you can also use @AutoconfigureOrder . That annotation has
the same semantic as the regular @Order annotation but provides a dedicated order for auto-configuration classes.

Auto-configurations have to be loaded that way only. Make sure that they are defined in a specific package space and that they are never the target of
component scan in particular.

44.3 Condition annotations
You almost always want to include one or more @Conditional annotations on your auto-configuration class. The @ConditionalOnMissingBean is one common
example that is used to allow developers to ‘override’ auto-configuration if they are not happy with your defaults.

Spring Boot includes a number of @Conditional annotations that you can reuse in your own code by annotating @Configuration classes or individual @Bean
methods.

44.3.1 Class conditions

The @ConditionalOnClass and @ConditionalOnMissingClass annotations allows configuration to be included based on the presence or absence of specific
classes. Due to the fact that annotation metadata is parsed using ASM you can actually use the value attribute to refer to the real class, even though that class might
not actually appear on the running application classpath. You can also use the name attribute if you prefer to specify the class name using a String value.

44.3.2 Bean conditions

The @ConditionalOnBean and @ConditionalOnMissingBean annotations allow a bean to be included based on the presence or absence of specific beans. You
can use the value attribute to specify beans by type, or name to specify beans by name. The search attribute allows you to limit the ApplicationContext
hierarchy that should be considered when searching for beans.

You need to be very careful about the order that bean definitions are added as these conditions are evaluated based on what has been processed so far.
For this reason, we recommend only using @ConditionalOnBean and @ConditionalOnMissingBean annotations on auto-configuration classes
(since these are guaranteed to load after any user-define beans definitions have been added).

@ConditionalOnBean and @ConditionalOnMissingBean do not prevent @Configuration classes from being created. Using these conditions
at the class level is equivalent to marking each contained @Bean method with the annotation.

44.3.3 Property conditions

The @ConditionalOnProperty annotation allows configuration to be included based on a Spring Environment property. Use the prefix and name attributes to

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

81 of 180 05/12/2016 20:33

specify the property that should be checked. By default any property that exists and is not equal to false will be matched. You can also create more advanced checks
using the havingValue and matchIfMissing attributes.

44.3.4 Resource conditions

The @ConditionalOnResource annotation allows configuration to be included only when a specific resource is present. Resources can be specified using the usual
Spring conventions, for example, file:/home/user/test.dat .

44.3.5 Web application conditions

The @ConditionalOnWebApplication and @ConditionalOnNotWebApplication annotations allow configuration to be included depending on whether the
application is a 'web application'. A web application is any application that is using a Spring WebApplicationContext , defines a session scope or has a
StandardServletEnvironment .

44.3.6 SpEL expression conditions

The @ConditionalOnExpression annotation allows configuration to be included based on the result of a SpEL expression.

44.4 Creating your own starter
A full Spring Boot starter for a library may contain the following components:

The autoconfigure module that contains the auto-configuration code.
The starter module that provides a dependency to the autoconfigure module as well as the library and any additional dependencies that are typically useful. In a
nutshell, adding the starter should be enough to start using that library.

You may combine the auto-configuration code and the dependency management in a single module if you don’t need to separate those two concerns.

44.4.1 Naming

Please make sure to provide a proper namespace for your starter. Do not start your module names with spring-boot , even if you are using a different Maven groupId.
We may offer an official support for the thing you’re auto-configuring in the future.

Here is a rule of thumb. Let’s assume that you are creating a starter for "acme", name the auto-configure module acme-spring-boot-autoconfigure and the
starter acme-spring-boot-starter . If you only have one module combining the two, use acme-spring-boot-starter .

Besides, if your starter provides configuration keys, use a proper namespace for them. In particular, do not include your keys in the namespaces that Spring Boot uses
(e.g. server , management , spring , etc). These are "ours" and we may improve/modify them in the future in such a way it could break your things.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as well. You may want to review the generated meta-data
(META-INF/spring-configuration-metadata.json) to make sure your keys are properly documented.

44.4.2 Autoconfigure module

The autoconfigure module contains everything that is necessary to get started with the library. It may also contain configuration keys definition
(@ConfigurationProperties) and any callback interface that can be used to further customize how the components are initialized.

You should mark the dependencies to the library as optional so that you can include the autoconfigure module in your projects more easily. If you do it that
way, the library won’t be provided and Spring Boot will back off by default.

44.4.3 Starter module

The starter is an empty jar, really. Its only purpose is to provide the necessary dependencies to work with the library; see it as an opinionated view of what is required to
get started.

Do not make assumptions about the project in which your starter is added. If the library you are auto-configuring typically requires other starters, mention them as well.
Providing a proper set of default dependencies may be hard if the number of optional dependencies is high as you should avoid bringing unnecessary dependencies for a
typical usage of the library.

45. What to read next
If you want to learn more about any of the classes discussed in this section you can check out the Spring Boot API documentation or you can browse the source code
directly. If you have specific questions, take a look at the how-to section.

If you are comfortable with Spring Boot’s core features, you can carry on and read about production-ready features.

Part V. Spring Boot Actuator: Production-ready features

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

82 of 180 05/12/2016 20:33

monitor your application using HTTP endpoints or with JMX. Auditing, health and metrics gathering can be automatically applied to your application.

Actuator HTTP endpoints are only available with a Spring MVC-based application. In particular, it will not work with Jersey unless you enable Spring MVC as well.

46. Enabling production-ready features
The spring-boot-actuator module provides all of Spring Boot’s production-ready features. The simplest way to enable the features is to add a dependency to the
spring-boot-starter-actuator ‘Starter’.

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling something. Actuators can generate a large amount of motion from a
small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>

</dependency>
</dependencies>

For Gradle, use the declaration:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-actuator")
}

47. Endpoints
Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a number of built-in endpoints and you can also add your own. For
example the health endpoint provides basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most applications choose HTTP monitoring, where the ID of the endpoint is
mapped to a URL. For example, by default, the health endpoint will be mapped to /health .

The following technology agnostic endpoints are available:

ID Description Sensitive
Default

actuator Provides a hypermedia-based “discovery page” for the other endpoints. Requires Spring HATEOAS to be on the classpath. true

autoconfig Displays an auto-configuration report showing all auto-configuration candidates and the reason why they ‘were’ or ‘were not’
applied.

true

beans Displays a complete list of all the Spring beans in your application. true

configprops Displays a collated list of all @ConfigurationProperties . true

dump Performs a thread dump. true

env Exposes properties from Spring’s ConfigurableEnvironment . true

flyway Shows any Flyway database migrations that have been applied. true

health Shows application health information (when the application is secure, a simple ‘status’ when accessed over an unauthenticated
connection or full message details when authenticated).

false

info Displays arbitrary application info. false

loggers Shows and modifies the configuration of loggers in the application. true

liquibase Shows any Liquibase database migrations that have been applied. true

metrics Shows ‘metrics’ information for the current application. true

mappings Displays a collated list of all @RequestMapping paths. true

shutdown Allows the application to be gracefully shutdown (not enabled by default). true

trace Displays trace information (by default the last 100 HTTP requests). true

If you are using Spring MVC, the following additional endpoints can also be used:

ID Description Sensitive

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

83 of 180 05/12/2016 20:33

Default

docs Displays documentation, including example requests and responses, for the Actuator’s endpoints. Requires
spring-boot-actuator-docs to be on the classpath.

false

heapdump Returns a GZip compressed hprof heap dump file. true

jolokia Exposes JMX beans over HTTP (when Jolokia is on the classpath). true

logfile Returns the contents of the logfile (if logging.file or logging.path properties have been set). Supports the use of the
HTTP Range header to retrieve part of the log file’s content.

true

Depending on how an endpoint is exposed, the sensitive property may be used as a security hint. For example, sensitive endpoints will require a
username/password when they are accessed over HTTP (or simply disabled if web security is not enabled).

47.1 Customizing endpoints
Endpoints can be customized using Spring properties. You can change if an endpoint is enabled , if it is considered sensitive and even its id .

For example, here is an application.properties that changes the sensitivity and id of the beans endpoint and also enables shutdown .

endpoints.beans.id=springbeans
endpoints.beans.sensitive=false
endpoints.shutdown.enabled=true

The prefix ‟ endpoints + . + name ” is used to uniquely identify the endpoint that is being configured.

By default, all endpoints except for shutdown are enabled. If you prefer to specifically “opt-in” endpoint enablement you can use the endpoints.enabled property.
For example, the following will disable all endpoints except for info :

endpoints.enabled=false
endpoints.info.enabled=true

Likewise, you can also choose to globally set the “sensitive” flag of all endpoints. By default, the sensitive flag depends on the type of endpoint (see the table above). For
example, to mark all endpoints as sensitive except info :

endpoints.sensitive=true
endpoints.info.sensitive=false

47.2 Hypermedia for actuator MVC endpoints
If endpoints.hypermedia.enabled is set to true and Spring HATEOAS is on the classpath (e.g. through the spring-boot-starter-hateoas or if you are
using Spring Data REST) then the HTTP endpoints from the Actuator are enhanced with hypermedia links, and a “discovery page” is added with links to all the endpoints.
The “discovery page” is available on /actuator by default. It is implemented as an endpoint, allowing properties to be used to configure its path
(endpoints.actuator.path) and whether or not it is enabled (endpoints.actuator.enabled).

When a custom management context path is configured, the “discovery page” will automatically move from /actuator to the root of the management context. For
example, if the management context path is /management then the discovery page will be available from /management .

If the HAL Browser is on the classpath via its webjar (org.webjars:hal-browser), or via the spring-data-rest-hal-browser then an HTML “discovery
page”, in the form of the HAL Browser, is also provided.

47.3 CORS support
Cross-origin resource sharing (CORS) is a W3C specification that allows you to specify in a flexible way what kind of cross domain requests are authorized. Actuator’s
MVC endpoints can be configured to support such scenarios.

CORS support is disabled by default and is only enabled once the endpoints.cors.allowed-origins property has been set. The configuration below permits
GET and POST calls from the example.com domain:

endpoints.cors.allowed-origins=http://example.com
endpoints.cors.allowed-methods=GET,POST

Check EndpointCorsProperties for a complete list of options.

47.4 Adding custom endpoints
If you add a @Bean of type Endpoint then it will automatically be exposed over JMX and HTTP (if there is an server available). An HTTP endpoints can be customized
further by creating a bean of type MvcEndpoint . Your MvcEndpoint is not a @Controller but it can use @RequestMapping (and @Managed*) to expose
resources.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

84 of 180 05/12/2016 20:33

If you are doing this as a library feature consider adding a configuration class annotated with @ManagementContextConfiguration to
/META-INF/spring.factories under the key
org.springframework.boot.actuate.autoconfigure.ManagementContextConfiguration . If you do that then the endpoint will move to a
child context with all the other MVC endpoints if your users ask for a separate management port or address. A configuration declared this way can be a
WebConfigurerAdapter if it wants to add static resources (for instance) to the management endpoints.

47.5 Health information
Health information can be used to check the status of your running application. It is often used by monitoring software to alert someone if a production system goes down.
The default information exposed by the health endpoint depends on how it is accessed. For an unauthenticated connection in a secure application a simple ‘status’
message is returned, and for an authenticated connection additional details are also displayed (see Section 48.7, “HTTP health endpoint access restrictions” for HTTP
details).

Health information is collected from all HealthIndicator beans defined in your ApplicationContext . Spring Boot includes a number of auto-configured
HealthIndicators and you can also write your own.

47.6 Security with HealthIndicators
Information returned by HealthIndicators is often somewhat sensitive in nature. For example, you probably don’t want to publish details of your database server to
the world. For this reason, by default, only the health status is exposed over an unauthenticated HTTP connection. If you are happy for complete health information to
always be exposed you can set endpoints.health.sensitive to false .

Health responses are also cached to prevent “denial of service” attacks. Use the endpoints.health.time-to-live property if you want to change the default
cache period of 1000 milliseconds.

47.6.1 Auto-configured HealthIndicators

The following HealthIndicators are auto-configured by Spring Boot when appropriate:

Name Description

CassandraHealthIndicator Checks that a Cassandra database is up.

DiskSpaceHealthIndicator Checks for low disk space.

DataSourceHealthIndicator Checks that a connection to DataSource can be obtained.

ElasticsearchHealthIndicator Checks that an Elasticsearch cluster is up.

JmsHealthIndicator Checks that a JMS broker is up.

MailHealthIndicator Checks that a mail server is up.

MongoHealthIndicator Checks that a Mongo database is up.

RabbitHealthIndicator Checks that a Rabbit server is up.

RedisHealthIndicator Checks that a Redis server is up.

SolrHealthIndicator Checks that a Solr server is up.

It is possible to disable them all using the management.health.defaults.enabled property.

47.6.2 Writing custom HealthIndicators

To provide custom health information you can register Spring beans that implement the HealthIndicator interface. You need to provide an implementation of the
health() method and return a Health response. The Health response should include a status and can optionally include additional details to be displayed.

import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.stereotype.Component;

@Component
public class MyHealthIndicator implements HealthIndicator {

@Override
public Health health() {

int errorCode = check(); // perform some specific health check
if (errorCode != 0) {

return Health.down().withDetail("Error Code", errorCode).build();
 }

return Health.up().build();
 }

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

85 of 180 05/12/2016 20:33

}

The identifier for a given HealthIndicator is the name of the bean without the HealthIndicator suffix if it exists. In the example above, the health
information will be available in an entry named my .

In addition to Spring Boot’s predefined Status types, it is also possible for Health to return a custom Status that represents a new system state. In such cases a
custom implementation of the HealthAggregator interface also needs to be provided, or the default implementation has to be configured using the
management.health.status.order configuration property.

For example, assuming a new Status with code FATAL is being used in one of your HealthIndicator implementations. To configure the severity order add the
following to your application properties:

management.health.status.order=DOWN, OUT_OF_SERVICE, UNKNOWN, UP

You might also want to register custom status mappings with the HealthMvcEndpoint if you access the health endpoint over HTTP. For example you could map
FATAL to HttpStatus.SERVICE_UNAVAILABLE .

47.7 Application information
Application information exposes various information collected from all InfoContributor beans defined in your ApplicationContext . Spring Boot includes a
number of auto-configured InfoContributors and you can also write your own.

47.7.1 Auto-configured InfoContributors

The following InfoContributors are auto-configured by Spring Boot when appropriate:

Name Description

EnvironmentInfoContributor Expose any key from the Environment under the info key.

GitInfoContributor Expose git information if a git.properties file is available.

BuildInfoContributor Expose build information if a META-INF/build-info.properties file is available.

It is possible to disable them all using the management.info.defaults.enabled property.

47.7.2 Custom application info information

You can customize the data exposed by the info endpoint by setting info.* Spring properties. All Environment properties under the info key will be automatically
exposed. For example, you could add the following to your application.properties :

info.app.encoding=UTF-8
info.app.java.source=1.8
info.app.java.target=1.8

Rather than hardcoding those values you could also expand info properties at build time.
Assuming you are using Maven, you could rewrite the example above as follows:
info.app.encoding=@project.build.sourceEncoding@
info.app.java.source=@java.version@
info.app.java.target=@java.version@

47.7.3 Git commit information

Another useful feature of the info endpoint is its ability to publish information about the state of your git source code repository when the project was built. If a
GitProperties bean is available, the git.branch , git.commit.id and git.commit.time properties will be exposed.

A GitProperties bean is auto-configured if a git.properties file is available at the root of the classpath. See Generate git information for more
details.

If you want to display the full git information (i.e. the full content of git.properties), use the management.info.git.mode property:

management.info.git.mode=full

47.7.4 Build information

The info endpoint can also publish information about your build if a BuildProperties bean is available. This happens if a
META-INF/build-info.properties file is available in the classpath.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

86 of 180 05/12/2016 20:33

The Maven and Gradle plugins can both generate that file, see Generate build information for more details.

47.7.5 Writing custom InfoContributors

To provide custom application information you can register Spring beans that implement the InfoContributor interface.

The example below contributes an example entry with a single value:

import java.util.Collections;

import org.springframework.boot.actuate.info.Info;
import org.springframework.boot.actuate.info.InfoContributor;
import org.springframework.stereotype.Component;

@Component
public class ExampleInfoContributor implements InfoContributor {

@Override
public void contribute(Info.Builder builder) {

 builder.withDetail("example",
 Collections.singletonMap("key", "value"));
 }

}

If you hit the info endpoint you should see a response that contains the following additional entry:

{
"example": {

"key" : "value"
}

}

48. Monitoring and management over HTTP
If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure all enabled endpoints to be exposed over HTTP. The default convention is to use
the id of the endpoint as the URL path. For example, health is exposed as /health .

48.1 Securing sensitive endpoints
If you add ‘Spring Security’ to your project, all sensitive endpoints exposed over HTTP will be protected. By default ‘basic’ authentication will be used with the username
user and a generated password (which is printed on the console when the application starts).

Generated passwords are logged as the application starts. Search for ‘Using default security password’.

You can use Spring properties to change the username and password and to change the security role(s) required to access the endpoints. For example, you might set the
following in your application.properties :

security.user.name=admin
security.user.password=secret
management.security.roles=SUPERUSER

If you don’t use Spring Security and your HTTP endpoints are exposed publicly, you should carefully consider which endpoints you enable. See
Section 47.1, “Customizing endpoints” for details of how you can set endpoints.enabled to false then “opt-in” only specific endpoints.

48.2 Customizing the management endpoint paths
Sometimes it is useful to group all management endpoints under a single path. For example, your application might already use /info for another purpose. You can
use the management.context-path property to set a prefix for your management endpoint:

management.context-path=/manage

The application.properties example above will change the endpoint from /{id} to /manage/{id} (e.g. /manage/info).

You can also change the “id” of an endpoint (using endpoints.{name}.id) which then changes the default resource path for the MVC endpoint. Legal endpoint ids
are composed only of alphanumeric characters (because they can be exposed in a number of places, including JMX object names, where special characters are
forbidden). The MVC path can be changed separately by configuring endpoints.{name}.path , and there is no validation on those values (so you can use anything
that is legal in a URL path). For example, to change the location of the /health endpoint to /ping/me you can set endpoints.health.path=/ping/me .

If you provide a custom MvcEndpoint remember to include a settable path property, and default it to /{id} if you want your code to behave like the
standard MVC endpoints. (Take a look at the HealthMvcEndpoint to see how you might do that.) If your custom endpoint is an Endpoint (not an
MvcEndpoint) then Spring Boot will take care of the path for you.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

87 of 180 05/12/2016 20:33

48.3 Customizing the management server port
Exposing management endpoints using the default HTTP port is a sensible choice for cloud based deployments. If, however, your application runs inside your own data
center you may prefer to expose endpoints using a different HTTP port.

The management.port property can be used to change the HTTP port.

management.port=8081

Since your management port is often protected by a firewall, and not exposed to the public you might not need security on the management endpoints, even if your main
application is secure. In that case you will have Spring Security on the classpath, and you can disable management security like this:

management.security.enabled=false

(If you don’t have Spring Security on the classpath then there is no need to explicitly disable the management security in this way, and it might even break the
application.)

48.4 Configuring management-specific SSL
When configured to use a custom port, the management server can also be configured with its own SSL using the various management.ssl.* properties. For
example, this allows a management server to be available via HTTP while the main application uses HTTPS:

server.port=8443
server.ssl.enabled=true
server.ssl.key-store=classpath:store.jks
server.ssl.key-password=secret
management.port=8080
management.ssl.enable=false

Alternatively, both the main server and the management server can use SSL but with different key stores:

server.port=8443
server.ssl.enabled=true
server.ssl.key-store=classpath:main.jks
server.ssl.key-password=secret
management.port=8080
management.ssl.enable=true
management.ssl.key-store=classpath:management.jks
management.ssl.key-password=secret

48.5 Customizing the management server address
You can customize the address that the management endpoints are available on by setting the management.address property. This can be useful if you want to listen
only on an internal or ops-facing network, or to only listen for connections from localhost .

You can only listen on a different address if the port is different to the main server port.

Here is an example application.properties that will not allow remote management connections:

management.port=8081
management.address=127.0.0.1

48.6 Disabling HTTP endpoints
If you don’t want to expose endpoints over HTTP you can set the management port to -1 :

management.port=-1

48.7 HTTP health endpoint access restrictions
The information exposed by the health endpoint varies depending on whether or not it’s accessed anonymously, and whether or not the enclosing application is secure.
By default, when accessed anonymously in a secure application, any details about the server’s health are hidden and the endpoint will simply indicate whether or not the
server is up or down. Furthermore the response is cached for a configurable period to prevent the endpoint being used in a denial of service attack. The
endpoints.health.time-to-live property is used to configure the caching period in milliseconds. It defaults to 1000, i.e. one second.

The above-described restrictions can be enhanced, thereby allowing only authenticated users full access to the health endpoint in a secure application. To do so, set
endpoints.health.sensitive to true . Here’s a summary of behavior (with default sensitive flag value “false” indicated in bold):

management.security.enabled endpoints.health.sensitive Unauthenticated Authenticated

false false Full content Full content

false true Status only Full content

true false Status only Full content

true true No content Full content

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

88 of 180 05/12/2016 20:33

49. Monitoring and management over JMX
Java Management Extensions (JMX) provide a standard mechanism to monitor and manage applications. By default Spring Boot will expose management endpoints as
JMX MBeans under the org.springframework.boot domain.

49.1 Customizing MBean names
The name of the MBean is usually generated from the id of the endpoint. For example the health endpoint is exposed as
org.springframework.boot/Endpoint/healthEndpoint .

If your application contains more than one Spring ApplicationContext you may find that names clash. To solve this problem you can set the
endpoints.jmx.unique-names property to true so that MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. Here is an example application.properties :

endpoints.jmx.domain=myapp
endpoints.jmx.unique-names=true

49.2 Disabling JMX endpoints
If you don’t want to expose endpoints over JMX you can set the endpoints.jmx.enabled property to false :

endpoints.jmx.enabled=false

49.3 Using Jolokia for JMX over HTTP
Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To use Jolokia, simply include a dependency to org.jolokia:jolokia-core .
For example, using Maven you would add the following:

<dependency>
<groupId>org.jolokia</groupId>
<artifactId>jolokia-core</artifactId>

</dependency>

Jolokia can then be accessed using /jolokia on your management HTTP server.

49.3.1 Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet parameters. With Spring Boot you can use your application.properties ,
simply prefix the parameter with jolokia.config. :

jolokia.config.debug=true

49.3.2 Disabling Jolokia

If you are using Jolokia but you don’t want Spring Boot to configure it, simply set the endpoints.jolokia.enabled property to false :

endpoints.jolokia.enabled=false

50. Loggers
Spring Boot Actuator includes the ability to view and configure the log levels of your application at runtime. You can view either the entire list or an individual logger’s
configuration which is made up of both the explicitly configured logging level as well as the effective logging level given to it by the logging framework. These levels can
be:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

OFF

null

with null indicating that there is no explicit configuration.

50.1 Configure a Logger
In order to configure a given logger, you POST a partial entity to the resource’s URI:

{
"configuredLevel": "DEBUG"

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

89 of 180 05/12/2016 20:33

51. Metrics
Spring Boot Actuator includes a metrics service with ‘gauge’ and ‘counter’ support. A ‘gauge’ records a single value; and a ‘counter’ records a delta (an increment or
decrement). Spring Boot Actuator also provides a PublicMetrics interface that you can implement to expose metrics that you cannot record via one of those two
mechanisms. Look at SystemPublicMetrics for an example.

Metrics for all HTTP requests are automatically recorded, so if you hit the metrics endpoint you should see a response similar to this:

{
"counter.status.200.root": 20,
"counter.status.200.metrics": 3,
"counter.status.200.star-star": 5,
"counter.status.401.root": 4,
"gauge.response.star-star": 6,
"gauge.response.root": 2,
"gauge.response.metrics": 3,
"classes": 5808,
"classes.loaded": 5808,
"classes.unloaded": 0,
"heap": 3728384,
"heap.committed": 986624,
"heap.init": 262144,
"heap.used": 52765,
"nonheap": 0,
"nonheap.committed": 77568,
"nonheap.init": 2496,
"nonheap.used": 75826,
"mem": 986624,
"mem.free": 933858,
"processors": 8,
"threads": 15,
"threads.daemon": 11,
"threads.peak": 15,
"threads.totalStarted": 42,
"uptime": 494836,
"instance.uptime": 489782,
"datasource.primary.active": 5,
"datasource.primary.usage": 0.25

}

Here we can see basic memory , heap , class loading , processor and thread pool information along with some HTTP metrics. In this instance the root
(‘/’) and /metrics URLs have returned HTTP 200 responses 20 and 3 times respectively. It also appears that the root URL returned HTTP 401 (unauthorized)
4 times. The double asterisks (star-star) comes from a request matched by Spring MVC as /** (normally a static resource).

The gauge shows the last response time for a request. So the last request to root took 2ms to respond and the last to /metrics took 3ms .

In this example we are actually accessing the endpoint over HTTP using the /metrics URL, this explains why metrics appears in the response.

51.1 System metrics
The following system metrics are exposed by Spring Boot:

The total system memory in KB (mem)
The amount of free memory in KB (mem.free)
The number of processors (processors)
The system uptime in milliseconds (uptime)
The application context uptime in milliseconds (instance.uptime)
The average system load (systemload.average)
Heap information in KB (heap , heap.committed , heap.init , heap.used)
Thread information (threads , thread.peak , thread.daemon)
Class load information (classes , classes.loaded , classes.unloaded)
Garbage collection information (gc.xxx.count , gc.xxx.time)

51.2 DataSource metrics
The following metrics are exposed for each supported DataSource defined in your application:

The number of active connections (datasource.xxx.active)
The current usage of the connection pool (datasource.xxx.usage).

All data source metrics share the datasource. prefix. The prefix is further qualified for each data source:

If the data source is the primary data source (that is either the only available data source or the one flagged @Primary amongst the existing ones), the prefix is
datasource.primary .
If the data source bean name ends with DataSource , the prefix is the name of the bean without DataSource (i.e. datasource.batch for
batchDataSource).
In all other cases, the name of the bean is used.

It is possible to override part or all of those defaults by registering a bean with a customized version of DataSourcePublicMetrics . By default, Spring Boot provides
metadata for all supported data sources; you can add additional beans if your favorite data source isn’t supported out of the

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

90 of 180 05/12/2016 20:33

box. See DataSourcePoolMetadataProvidersConfiguration for examples.

51.3 Cache metrics
The following metrics are exposed for each supported cache defined in your application:

The current size of the cache (cache.xxx.size)
Hit ratio (cache.xxx.hit.ratio)
Miss ratio (cache.xxx.miss.ratio)

Cache providers do not expose the hit/miss ratio in a consistent way. While some expose an aggregated value (i.e. the hit ratio since the last time the stats
were cleared), others expose a temporal value (i.e. the hit ratio of the last second). Check your caching provider documentation for more details.

If two different cache managers happen to define the same cache, the name of the cache is prefixed by the name of the CacheManager bean.

It is possible to override part or all of those defaults by registering a bean with a customized version of CachePublicMetrics . By default, Spring Boot provides cache
statistics for EhCache, Hazelcast, Infinispan, JCache and Caffeine. You can add additional CacheStatisticsProvider beans if your favorite caching library isn’t
supported out of the box. See CacheStatisticsAutoConfiguration for examples.

51.4 Tomcat session metrics
If you are using Tomcat as your embedded servlet container, session metrics will automatically be exposed. The httpsessions.active and httpsessions.max
keys provide the number of active and maximum sessions.

51.5 Recording your own metrics
To record your own metrics inject a CounterService and/or GaugeService into your bean. The CounterService exposes increment , decrement and
reset methods; the GaugeService provides a submit method.

Here is a simple example that counts the number of times that a method is invoked:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.metrics.CounterService;
import org.springframework.stereotype.Service;

@Service
public class MyService {

private final CounterService counterService;

@Autowired
public MyService(CounterService counterService) {

this.counterService = counterService;
 }

public void exampleMethod() {
this.counterService.increment("services.system.myservice.invoked");

 }

}

You can use any string as a metric name but you should follow guidelines of your chosen store/graphing technology. Some good guidelines for Graphite are
available on Matt Aimonetti’s Blog.

51.6 Adding your own public metrics
To add additional metrics that are computed every time the metrics endpoint is invoked, simply register additional PublicMetrics implementation bean(s). By default,
all such beans are gathered by the endpoint. You can easily change that by defining your own MetricsEndpoint .

51.7 Special features with Java 8
The default implementation of GaugeService and CounterService provided by Spring Boot depends on the version of Java that you are using. With Java 8 (or
better) the implementation switches to a high-performance version optimized for fast writes, backed by atomic in-memory buffers, rather than by the immutable but
relatively expensive Metric<?> type (counters are approximately 5 times faster and gauges approximately twice as fast as the repository-based implementations). The
Dropwizard metrics services (see below) are also very efficient even for Java 7 (they have backports of some of the Java 8 concurrency libraries), but they do not record
timestamps for metric values. If performance of metric gathering is a concern then it is always advisable to use one of the high-performance options, and also to only read
metrics infrequently, so that the writes are buffered locally and only read when needed.

The old MetricRepository and its InMemoryMetricRepository implementation are not used by default if you are on Java 8 or if you are using
Dropwizard metrics.

51.8 Metric writers, exporters and aggregation

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

91 of 180 05/12/2016 20:33

Spring Boot provides a couple of implementations of a marker interface called Exporter which can be used to copy metric readings from the in-memory buffers to a
place where they can be analyzed and displayed. Indeed, if you provide a @Bean that implements the MetricWriter interface (or GaugeWriter for simple use
cases) and mark it @ExportMetricWriter , then it will automatically be hooked up to an Exporter and fed metric updates every 5 seconds (configured via
spring.metrics.export.delay-millis). In addition, any MetricReader that you define and mark as @ExportMetricReader will have its values exported
by the default exporter.

The default exporter is a MetricCopyExporter which tries to optimize itself by not copying values that haven’t changed since it was last called (the optimization can
be switched off using a flag spring.metrics.export.send-latest). Note also that the Dropwizard MetricRegistry has no support for timestamps, so the
optimization is not available if you are using Dropwizard metrics (all metrics will be copied on every tick).

The default values for the export trigger (delay-millis , includes , excludes and send-latest) can be set as spring.metrics.export.* . Individual
values for specific MetricWriters can be set as spring.metrics.export.triggers.<name>.* where <name> is a bean name (or pattern for matching bean
names).

The automatic export of metrics is disabled if you switch off the default MetricRepository (e.g. by using Dropwizard metrics). You can get back the
same functionality be declaring a bean of your own of type MetricReader and declaring it to be @ExportMetricReader .

51.8.1 Example: Export to Redis

If you provide a @Bean of type RedisMetricRepository and mark it @ExportMetricWriter the metrics are exported to a Redis cache for aggregation. The
RedisMetricRepository has two important parameters to configure it for this purpose: prefix and key (passed into its constructor). It is best to use a prefix that
is unique to the application instance (e.g. using a random value and maybe the logical name of the application to make it possible to correlate with other instances of the
same application). The “key” is used to keep a global index of all metric names, so it should be unique “globally”, whatever that means for your system (e.g. two instances
of the same system could share a Redis cache if they have distinct keys).

Example:

@Bean
@ExportMetricWriter
MetricWriter metricWriter(MetricExportProperties export) {

return new RedisMetricRepository(connectionFactory,
 export.getRedis().getPrefix(), export.getRedis().getKey());
}

application.properties.

spring.metrics.export.redis.prefix: metrics.mysystem.${spring.application.name:application}.${random.value:0000}
spring.metrics.export.redis.key: keys.metrics.mysystem

The prefix is constructed with the application name and id at the end, so it can easily be used to identify a group of processes with the same logical name later.

It’s important to set both the key and the prefix . The key is used for all repository operations, and can be shared by multiple repositories. If multiple
repositories share a key (like in the case where you need to aggregate across them), then you normally have a read-only “master” repository that has a
short, but identifiable, prefix (like “metrics.mysystem”), and many write-only repositories with prefixes that start with the master prefix (like
metrics.mysystem.* in the example above). It is efficient to read all the keys from a “master” repository like that, but inefficient to read a subset with a
longer prefix (e.g. using one of the writing repositories).

The example above uses MetricExportProperties to inject and extract the key and prefix. This is provided to you as a convenience by Spring Boot,
configured with sensible defaults. There is nothing to stop you using your own values as long as they follow the recommendations.

51.8.2 Example: Export to Open TSDB

If you provide a @Bean of type OpenTsdbGaugeWriter and mark it @ExportMetricWriter metrics are exported to Open TSDB for aggregation. The
OpenTsdbGaugeWriter has a url property that you need to set to the Open TSDB “/put” endpoint, e.g. localhost:4242/api/put). It also has a
namingStrategy that you can customize or configure to make the metrics match the data structure you need on the server. By default it just passes through the metric
name as an Open TSDB metric name, and adds the tags “domain” (with value “org.springframework.metrics”) and “process” (with the value equal to the object hash of
the naming strategy). Thus, after running the application and generating some metrics you can inspect the metrics in the TSD UI (localhost:4242 by default).

Example:

curl localhost:4242/api/query?start=1h-ago&m=max:counter.status.200.root
[

{
"metric": "counter.status.200.root",
"tags": {

"domain": "org.springframework.metrics",
"process": "b968a76"

},
"aggregateTags": [],
"dps": {

"1430492872": 2,
"1430492875": 6

}
}

]

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

92 of 180 05/12/2016 20:33

51.8.3 Example: Export to Statsd

To export metrics to Statsd, make sure first that you have added com.timgroup:java-statsd-client as a dependency of your project (Spring Boot provides a
dependency management for it). Then add a spring.metrics.export.statsd.host value to your application.properties file. Connections will be opened
to port 8125 unless a spring.metrics.export.statsd.port override is provided. You can use spring.metrics.export.statsd.prefix if you want a
custom prefix.

Alternatively, you can provide a @Bean of type StatsdMetricWriter and mark it @ExportMetricWriter :

@Value("${spring.application.name:application}.${random.value:0000}")
private String prefix = "metrics";

@Bean
@ExportMetricWriter
MetricWriter metricWriter() {

return new StatsdMetricWriter(prefix, "localhost", 8125);
}

51.8.4 Example: Export to JMX

If you provide a @Bean of type JmxMetricWriter marked @ExportMetricWriter the metrics are exported as MBeans to the local server (the MBeanExporter
is provided by Spring Boot JMX auto-configuration as long as it is switched on). Metrics can then be inspected, graphed, alerted etc. using any tool that understands JMX
(e.g. JConsole or JVisualVM).

Example:

@Bean
@ExportMetricWriter
MetricWriter metricWriter(MBeanExporter exporter) {

return new JmxMetricWriter(exporter);
}

Each metric is exported as an individual MBean. The format for the ObjectNames is given by an ObjectNamingStrategy which can be injected into the
JmxMetricWriter (the default breaks up the metric name and tags the first two period-separated sections in a way that should make the metrics group nicely in
JVisualVM or JConsole).

51.9 Aggregating metrics from multiple sources
There is an AggregateMetricReader that you can use to consolidate metrics from different physical sources. Sources for the same logical metric just need to publish
them with a period-separated prefix, and the reader will aggregate (by truncating the metric names, and dropping the prefix). Counters are summed and everything else
(i.e. gauges) take their most recent value.

This is very useful if multiple application instances are feeding to a central (e.g. Redis) repository and you want to display the results. Particularly recommended in
conjunction with a MetricReaderPublicMetrics for hooking up to the results to the “/metrics” endpoint.

Example:

@Autowired
private MetricExportProperties export;

@Bean
public PublicMetrics metricsAggregate() {
return new MetricReaderPublicMetrics(aggregatesMetricReader());

}

private MetricReader globalMetricsForAggregation() {
return new RedisMetricRepository(this.connectionFactory,

this.export.getRedis().getAggregatePrefix(), this.export.getRedis().getKey());
}

private MetricReader aggregatesMetricReader() {
 AggregateMetricReader repository = new AggregateMetricReader(
 globalMetricsForAggregation());
return repository;

}

The example above uses MetricExportProperties to inject and extract the key and prefix. This is provided to you as a convenience by Spring Boot,
and the defaults will be sensible. They are set up in MetricExportAutoConfiguration .

The MetricReaders above are not @Beans and are not marked as @ExportMetricReader because they are just collecting and analyzing data from
other repositories, and don’t want to export their values.

51.10 Dropwizard Metrics
A default MetricRegistry Spring bean will be created when you declare a dependency to the io.dropwizard.metrics:metrics-core library; you can also
register you own @Bean instance if you need customizations. Users of the Dropwizard ‘Metrics’ library will find that Spring Boot metrics are automatically published to
com.codahale.metrics.MetricRegistry . Metrics from the MetricRegistry are also automatically exposed via the /metrics endpoint

When Dropwizard metrics are in use, the default CounterService and GaugeService are replaced with a DropwizardMetricServices , which is a wrapper

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

93 of 180 05/12/2016 20:33

around the MetricRegistry (so you can @Autowired one of those services and use it as normal). You can also create “special” Dropwizard metrics by prefixing
your metric names with the appropriate type (i.e. timer.* , histogram.* for gauges, and meter.* for counters).

51.11 Message channel integration
If a MessageChannel bean called metricsChannel exists, then a MetricWriter will be created that writes metrics to that channel. The writer is automatically
hooked up to an exporter (as for all writers), so all metric values will appear on the channel, and additional analysis or actions can be taken by subscribers (it’s up to you
to provide the channel and any subscribers you need).

52. Auditing
Spring Boot Actuator has a flexible audit framework that will publish events once Spring Security is in play (‘authentication success’, ‘failure’ and ‘access denied’
exceptions by default). This can be very useful for reporting, and also to implement a lock-out policy based on authentication failures. To customize published security
events you can provide your own implementations of AbstractAuthenticationAuditListener and AbstractAuthorizationAuditListener .

You can also choose to use the audit services for your own business events. To do that you can either inject the existing AuditEventRepository into your own
components and use that directly, or you can simply publish AuditApplicationEvent via the Spring ApplicationEventPublisher (using
ApplicationEventPublisherAware).

53. Tracing
Tracing is automatically enabled for all HTTP requests. You can view the trace endpoint and obtain basic information about the last 100 requests:

[{
"timestamp": 1394343677415,
"info": {
"method": "GET",
"path": "/trace",
"headers": {
"request": {
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
"Connection": "keep-alive",
"Accept-Encoding": "gzip, deflate",
"User-Agent": "Mozilla/5.0 Gecko/Firefox",
"Accept-Language": "en-US,en;q=0.5",
"Cookie": "_ga=GA1.1.827067509.1390890128; ..."
"Authorization": "Basic ...",
"Host": "localhost:8080"

},
"response": {
"Strict-Transport-Security": "max-age=31536000 ; includeSubDomains",
"X-Application-Context": "application:8080",
"Content-Type": "application/json;charset=UTF-8",
"status": "200"

}
}

}
 },{

"timestamp": 1394343684465,
 ...

}]

53.1 Custom tracing
If you need to trace additional events you can inject a TraceRepository into your Spring beans. The add method accepts a single Map structure that will be
converted to JSON and logged.

By default an InMemoryTraceRepository will be used that stores the last 100 events. You can define your own instance of the InMemoryTraceRepository bean
if you need to expand the capacity. You can also create your own alternative TraceRepository implementation if needed.

54. Process monitoring
In Spring Boot Actuator you can find a couple of classes to create files that are useful for process monitoring:

ApplicationPidFileWriter creates a file containing the application PID (by default in the application directory with the file name application.pid).
EmbeddedServerPortFileWriter creates a file (or files) containing the ports of the embedded server (by default in the application directory with the file name
application.port).

These writers are not activated by default, but you can enable them in one of the ways described below.

54.1 Extend configuration
In META-INF/spring.factories file you can activate the listener(s) that writes a PID file. Example:

org.springframework.context.ApplicationListener=\
org.springframework.boot.actuate.system.ApplicationPidFileWriter,
org.springframework.boot.actuate.system.EmbeddedServerPortFileWriter

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

94 of 180 05/12/2016 20:33

54.2 Programmatically
You can also activate a listener by invoking the SpringApplication.addListeners(…) method and passing the appropriate Writer object. This method also
allows you to customize the file name and path via the Writer constructor.

55. What to read next
If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator sample applications. You also might want to read about graphing
tools such as Graphite.

Otherwise, you can continue on, to read about ‘deployment options’ or jump ahead for some in-depth information about Spring Boot’s build tool plugins.

Part VI. Deploying Spring Boot applications

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to deploying your application. You can easily deploy Spring Boot applications to a
variety of cloud platforms, to a container images (such as Docker) or to virtual/real machines.

This section covers some of the more common deployment scenarios.

56. Deploying to the cloud
Spring Boot’s executable jars are ready-made for most popular cloud PaaS (platform-as-a-service) providers. These providers tend to require that you “bring your own
container”; they manage application processes (not Java applications specifically), so they need some intermediary layer that adapts your application to the cloud’s notion
of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack wraps your deployed code in whatever is needed to start your
application: it might be a JDK and a call to java , it might be an embedded web server, or it might be a full-fledged application server. A buildpack is pluggable, but
ideally you should be able to get by with as few customizations to it as possible. This reduces the footprint of functionality that is not under your control. It minimizes
divergence between development and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged within it.

In this section we’ll look at what it takes to get the simple application that we developed in the “Getting Started” section up and running in the Cloud.

56.1 Cloud Foundry
Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The Cloud Foundry Java buildpack has excellent support for Spring
applications, including Spring Boot. You can deploy stand-alone executable jar applications, as well as traditional .war packaged applications.

Once you’ve built your application (using, for example, mvn clean package) and installed the cf command line tool, simply deploy your application using the
cf push command as follows, substituting the path to your compiled .jar . Be sure to have logged in with your cf command line client before pushing an
application.

$ cf push acloudyspringtime -p target/demo-0.0.1-SNAPSHOT.jar

See the cf push documentation for more options. If there is a Cloud Foundry manifest.yml file present in the same directory, it will be consulted.

Here we are substituting acloudyspringtime for whatever value you give cf as the name of your application.

At this point cf will start uploading your application:

Uploading acloudyspringtime... OK
Preparing to start acloudyspringtime... OK
-----> Downloaded app package (8.9M)
-----> Java Buildpack source: system
-----> Downloading Open JDK 1.7.0_51 from .../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)
 Expanding Open JDK to .java-buildpack/open_jdk (1.2s)
-----> Downloading Spring Auto Reconfiguration from 0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)
-----> Uploading droplet (44M)
Checking status of app 'acloudyspringtime'...
 0 of 1 instances running (1 starting)
 ...
 0 of 1 instances running (1 down)
 ...
 0 of 1 instances running (1 starting)
 ...
 1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

It’s easy to then verify the status of the deployed application:

$ cf apps
Getting applications in ...

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

95 of 180 05/12/2016 20:33

OK

name requested state instances memory disk urls
...
acloudyspringtime started 1/1 512M 1G acloudyspringtime.cfapps.io
...

Once Cloud Foundry acknowledges that your application has been deployed, you should be able to hit the application at the URI given, in this case
http://acloudyspringtime.cfapps.io/ .

56.1.1 Binding to services

By default, metadata about the running application as well as service connection information is exposed to the application as environment variables (for example:
$VCAP_SERVICES). This architecture decision is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature; process-scoped
environment variables are language agnostic.

Environment variables don’t always make for the easiest API so Spring Boot automatically extracts them and flattens the data into properties that can be accessed
through Spring’s Environment abstraction:

@Component
class MyBean implements EnvironmentAware {

private String instanceId;

@Override
public void setEnvironment(Environment environment) {

this.instanceId = environment.getProperty("vcap.application.instance_id");
 }

// ...

}

All Cloud Foundry properties are prefixed with vcap . You can use vcap properties to access application information (such as the public URL of the application) and
service information (such as database credentials). See CloudFoundryVcapEnvironmentPostProcessor Javadoc for complete details.

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource. Spring Boot includes auto-configuration support and a
spring-boot-starter-cloud-connectors starter.

56.2 Heroku
Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfile , which provides the incantation required to deploy an application.
Heroku assigns a port for the Java application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. Here’s the Procfile for our starter REST application:

web: java -Dserver.port=$PORT -jar target/demo-0.0.1-SNAPSHOT.jar

Spring Boot makes -D arguments available as properties accessible from a Spring Environment instance. The server.port configuration property is fed to the
embedded Tomcat, Jetty or Undertow instance which then uses it when it starts up. The $PORT environment variable is assigned to us by the Heroku PaaS.

Heroku by default will use Java 1.8. This is fine as long as your Maven or Gradle build is set to use the same version (Maven users can use the java.version property). If
you want to use JDK 1.7, create a new file adjacent to your pom.xml and Procfile , called system.properties . In this file add the following:

java.runtime.version=1.7

This should be everything you need. The most common workflow for Heroku deployments is to git push the code to production.

$ git push heroku master

Initializing repository, done.
Counting objects: 95, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (78/78), done.
Writing objects: 100% (95/95), 8.66 MiB | 606.00 KiB/s, done.
Total 95 (delta 31), reused 0 (delta 0)

-----> Java app detected
-----> Installing OpenJDK 1.8... done
-----> Installing Maven 3.3.1... done
-----> Installing settings.xml... done
-----> Executing: mvn -B -DskipTests=true clean install

 [INFO] Scanning for projects...
 Downloading: http://repo.spring.io/...
 Downloaded: http://repo.spring.io/... (818 B at 1.8 KB/sec)

 Downloaded: http://s3pository.heroku.com/jvm/... (152 KB at 595.3 KB/sec)
 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/target/...
 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/pom.xml ...
 [INFO] --
 [INFO] BUILD SUCCESS
 [INFO] --

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

96 of 180 05/12/2016 20:33

 [INFO] Total time: 59.358s
 [INFO] Finished at: Fri Mar 07 07:28:25 UTC 2014
 [INFO] Final Memory: 20M/493M
 [INFO] --

-----> Discovering process types
 Procfile declares types -> web

-----> Compressing... done, 70.4MB
-----> Launching... done, v6
 http://agile-sierra-1405.herokuapp.com/ deployed to Heroku

To git@heroku.com:agile-sierra-1405.git
 * [new branch] master -> master

Your application should now be up and running on Heroku.

56.3 OpenShift
OpenShift is the RedHat public (and enterprise) PaaS solution. Like Heroku, it works by running scripts triggered by git commits, so you can script the launching of a
Spring Boot application in pretty much any way you like as long as the Java runtime is available (which is a standard feature you can ask for at OpenShift). To do this you
can use the DIY Cartridge and hooks in your repository under .openshift/action_hooks :

The basic model is to:

Ensure Java and your build tool are installed remotely, e.g. using a pre_build hook (Java and Maven are installed by default, Gradle is not)1.
Use a build hook to build your jar (using Maven or Gradle), e.g.

#!/bin/bash
cd $OPENSHIFT_REPO_DIR
mvn package -s .openshift/settings.xml -DskipTests=true

2.

Add a start hook that calls java -jar …

#!/bin/bash
cd $OPENSHIFT_REPO_DIR
nohup java -jar target/*.jar --server.port=${OPENSHIFT_DIY_PORT} --server.address=${OPENSHIFT_DIY_IP} &

3.

Use a stop hook (since the start is supposed to return cleanly), e.g.

#!/bin/bash
source $OPENSHIFT_CARTRIDGE_SDK_BASH
PID=$(ps -ef | grep java.*\.jar | grep -v grep | awk '{ print $2 }')
if [-z "$PID"]
then
 client_result "Application is already stopped"
else
 kill $PID
fi

4.

Embed service bindings from environment variables provided by the platform in your application.properties , e.g.

spring.datasource.url: jdbc:mysql://${OPENSHIFT_MYSQL_DB_HOST}:${OPENSHIFT_MYSQL_DB_PORT}/${OPENSHIFT_APP_NAME}
spring.datasource.username: ${OPENSHIFT_MYSQL_DB_USERNAME}
spring.datasource.password: ${OPENSHIFT_MYSQL_DB_PASSWORD}

5.

There’s a blog on running Gradle in OpenShift on their website that will get you started with a gradle build to run the app.

56.4 Boxfuse and Amazon Web Services
Boxfuse works by turning your Spring Boot executable jar or war into a minimal VM image that can be deployed unchanged either on VirtualBox or on AWS. Boxfuse
comes with deep integration for Spring Boot and will use the information from your Spring Boot configuration file to automatically configure ports and health check URLs.
Boxfuse leverages this information both for the images it produces as well as for all the resources it provisions (instances, security groups, elastic load balancers, etc).

Once you have created a Boxfuse account, connected it to your AWS account, and installed the latest version of the Boxfuse Client, you can deploy your Spring Boot
application to AWS as follows (ensure the application has been built by Maven or Gradle first using, for example, mvn clean package):

$ boxfuse run myapp-1.0.jar -env=prod

See the boxfuse run documentation for more options. If there is a boxfuse.com/docs/commandline/#configuration [boxfuse.conf] file present in the current
directory, it will be consulted.

By default Boxfuse will activate a Spring profile named boxfuse on startup and if your executable jar or war contains an boxfuse.com/docs/payloads
/springboot.html#configuration [application-boxfuse.properties] file, Boxfuse will base its configuration based on the properties it contains.

At this point boxfuse will create an image for your application, upload it, and then configure and start the necessary resources on AWS:

Fusing Image for myapp-1.0.jar ...
Image fused in 00:06.838s (53937 K) -> axelfontaine/myapp:1.0
Creating axelfontaine/myapp ...
Pushing axelfontaine/myapp:1.0 ...
Verifying axelfontaine/myapp:1.0 ...

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

97 of 180 05/12/2016 20:33

Mapping myapp-axelfontaine.boxfuse.io to 52.28.233.167 ...
Waiting for AWS to create an AMI for axelfontaine/myapp:1.0 in eu-central-1 (this may take up to 50 seconds) ...
AMI created in 00:23.557s -> ami-d23f38cf
Creating security group boxfuse-sg_axelfontaine/myapp:1.0 ...
Launching t2.micro instance of axelfontaine/myapp:1.0 (ami-d23f38cf) in eu-central-1 ...
Instance launched in 00:30.306s -> i-92ef9f53
Waiting for AWS to boot Instance i-92ef9f53 and Payload to start at http://52.28.235.61/ ...
Payload started in 00:29.266s -> http://52.28.235.61/
Remapping Elastic IP 52.28.233.167 to i-92ef9f53 ...
Waiting 15s for AWS to complete Elastic IP Zero Downtime transition ...
Deployment completed successfully. axelfontaine/myapp:1.0 is up and running at http://myapp-axelfontaine.boxfuse.io/

Your application should now be up and running on AWS.

There’s a blog on deploying Spring Boot apps on EC2 as well as documentation for the Boxfuse Spring Boot integration on their website that will get you started with a
Maven build to run the app.

56.5 Google App Engine
Google App Engine is tied to the Servlet 2.5 API, so you can’t deploy a Spring Application there without some modifications. See the Servlet 2.5 section of this guide.

57. Installing Spring Boot applications
In additional to running Spring Boot applications using java -jar it is also possible to make fully executable applications for Unix systems. This makes it very easy to
install and manage Spring Boot applications in common production environments.

To create a ‘fully executable’ jar with Maven use the following plugin configuration:

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

<executable>true</executable>
</configuration>

</plugin>

With Gradle, the equivalent configuration would be:

springBoot {
 executable = true
}

You can then run your application by typing ./my-application.jar (where my-application is the name of your artifact).

Fully executable jars work by embedding an extra script at the front of the file. Not all tools currently accept this format so you may not always be able to use
this technique.

The default script supports most Linux distributions and is tested on CentOS and Ubuntu. Other platforms, such as OS X and FreeBSD, will require the use
of a custom embeddedLaunchScript .

When a fully executable jar is run, it uses the jar’s directory as the working directory.

57.1 Unix/Linux services
Spring Boot application can be easily started as Unix/Linux services using either init.d or systemd .

57.1.1 Installation as an init.d service (System V)

If you’ve configured Spring Boot’s Maven or Gradle plugin to generate a fully executable jar, and you’re not using a custom embeddedLaunchScript , then your
application can be used as an init.d service. Simply symlink the jar to init.d to support the standard start , stop , restart and status commands.

The script supports the following features:

Starts the services as the user that owns the jar file
Tracks application’s PID using /var/run/<appname>/<appname>.pid
Writes console logs to /var/log/<appname>.log

Assuming that you have a Spring Boot application installed in /var/myapp , to install a Spring Boot application as an init.d service simply create a symlink:

$ sudo ln -s /var/myapp/myapp.jar /etc/init.d/myapp

Once installed, you can start and stop the service in the usual way. For example, on a Debian based system:

$ service myapp start

If your application fails to start, check the log file written to /var/log/<appname>.log for errors.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

98 of 180 05/12/2016 20:33

You can also flag the application to start automatically using your standard operating system tools. For example, on Debian:

$ update-rc.d myapp defaults <priority>

Securing an init.d service

The following is a set of guidelines on how to secure a Spring Boot application that’s being run as an init.d service. It is not intended to be an exhaustive list
of everything that should be done to harden an application and the environment in which it runs.

When executed as root, as is the case when root is being used to start an init.d service, the default executable script will run the application as the user which owns the
jar file. You should never run a Spring Boot application as root so your application’s jar file should never be owned by root. Instead, create a specific user to run your
application and use chown to make it the owner of the jar file. For example:

$ chown bootapp:bootapp your-app.jar

In this case, the default executable script will run the application as the bootapp user.

To reduce the chances of the application’s user account being compromised, you should consider preventing it from using a login shell. Set the account’s
shell to /usr/sbin/nologin , for example.

You should also take steps to prevent the modification of your application’s jar file. Firstly, configure its permissions so that it cannot be written and can only be read or
executed by its owner:

$ chmod 500 your-app.jar

Secondly, you should also take steps to limit the damage if your application or the account that’s running it is compromised. If an attacker does gain access, they could
make the jar file writable and change its contents. One way to protect against this is to make it immutable using chattr :

$ sudo chattr +i your-app.jar

This will prevent any user, including root, from modifying the jar.

If root is used to control the application’s service and you use a .conf file to customize its startup, the .conf file will be read and evaluated by the root user. It should
be secured accordingly. Use chmod so that the file can only be read by the owner and use chown to make root the owner:

$ chmod 400 your-app.conf
$ sudo chown root:root your-app.conf

57.1.2 Installation as a systemd service

Systemd is the successor of the System V init system, and is now being used by many modern Linux distributions. Although you can continue to use init.d scripts with
systemd , it is also possible to launch Spring Boot applications using systemd ‘service’ scripts.

Assuming that you have a Spring Boot application installed in /var/myapp , to install a Spring Boot application as a systemd service create a script named
myapp.service using the following example and place it in /etc/systemd/system directory:

[Unit]
Description=myapp
After=syslog.target

[Service]
User=myapp
ExecStart=/var/myapp/myapp.jar
SuccessExitStatus=143

[Install]
WantedBy=multi-user.target

Remember to change the Description , User and ExecStart fields for your application.

Note that ExecStart field does not declare the script action command, which means that run command is used by default.

Note that unlike when running as an init.d service, user that runs the application, PID file and console log file are managed by systemd itself and therefore must be
configured using appropriate fields in ‘service’ script. Consult the service unit configuration man page for more details.

To flag the application to start automatically on system boot use the following command:

$ systemctl enable myapp.service

Refer to man systemctl for more details.

57.1.3 Customizing the startup script

The default embedded startup script written by the Maven or Gradle plugin can be customized in a number of ways. For most people, using the default script along with a
few customizations is usually enough. If you find you can’t customize something that you need to, you can always use the embeddedLaunchScript option to write your

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

99 of 180 05/12/2016 20:33

own file entirely.

Customizing script when it’s written

It often makes sense to customize elements of the start script as it’s written into the jar file. For example, init.d scripts can provide a “description” and, since you know this
up front (and it won’t change), you may as well provide it when the jar is generated.

To customize written elements, use the embeddedLaunchScriptProperties option of the Spring Boot Maven or Gradle plugins.

The following property substitutions are supported with the default script:

Name Description

mode The script mode. Defaults to auto .

initInfoProvides The Provides section of “INIT INFO”. Defaults to spring-boot-application for Gradle and to
${project.artifactId} for Maven.

initInfoShortDescription The Short-Description section of “INIT INFO”. Defaults to Spring Boot Application for Gradle and to
${project.name} for Maven.

initInfoDescription The Description section of “INIT INFO”. Defaults to Spring Boot Application for Gradle and to
${project.description} (falling back to ${project.name}) for Maven.

initInfoChkconfig The chkconfig section of “INIT INFO”. Defaults to 2345 99 01 .

confFolder The default value for CONF_FOLDER . Defaults to the folder containing the jar.

logFolder The default value for LOG_FOLDER . Only valid for an init.d service.

logFilename The default value for LOG_FILENAME . Only valid for an init.d service.

pidFolder The default value for PID_FOLDER . Only valid for an init.d service.

pidFilename The default value for the name of the pid file in PID_FOLDER . Only valid for an init.d service.

useStartStopDaemon If the start-stop-daemon command, when it’s available, should be used to control the process. Defaults to true .

Customizing script when it runs

For items of the script that need to be customized after the jar has been written you can use environment variables or a config file.

The following environment properties are supported with the default script:

Variable Description

MODE The “mode” of operation. The default depends on the way the jar was built, but will usually be auto (meaning it tries to guess if it is

an init script by checking if it is a symlink in a directory called init.d). You can explicitly set it to service so that the
stop|start|status|restart commands work, or to run if you just want to run the script in the foreground.

USE_START_STOP_DAEMON If the start-stop-daemon command, when it’s available, should be used to control the process. Defaults to true .

PID_FOLDER The root name of the pid folder (/var/run by default).

LOG_FOLDER The name of the folder to put log files in (/var/log by default).

CONF_FOLDER The name of the folder to read .conf files from (same folder as jar-file by default).

LOG_FILENAME The name of the log file in the LOG_FOLDER (<appname>.log by default).

APP_NAME The name of the app. If the jar is run from a symlink the script guesses the app name, but if it is not a symlink, or you want to
explicitly set the app name this can be useful.

RUN_ARGS The arguments to pass to the program (the Spring Boot app).

JAVA_HOME The location of the java executable is discovered by using the PATH by default, but you can set it explicitly if there is an
executable file at $JAVA_HOME/bin/java .

JAVA_OPTS Options that are passed to the JVM when it is launched.

JARFILE The explicit location of the jar file, in case the script is being used to launch a jar that it is not actually embedded in.

DEBUG if not empty will set the -x flag on the shell process, making it easy to see the logic in the script.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

100 of 180 05/12/2016 20:33

The PID_FOLDER , LOG_FOLDER and LOG_FILENAME variables are only valid for an init.d service. With systemd the equivalent customizations
are made using ‘service’ script. Check the service unit configuration man page for more details.

With the exception of JARFILE and APP_NAME , the above settings can be configured using a .conf file. The file is expected next to the jar file and have the same
name but suffixed with .conf rather than .jar . For example, a jar named /var/myapp/myapp.jar will use the configuration file named
/var/myapp/myapp.conf .

myapp.conf.

JAVA_OPTS=-Xmx1024M
LOG_FOLDER=/custom/log/folder

You can use a CONF_FOLDER environment variable to customize the location of the config file if you don’t like it living next to the jar.

To learn about securing this file appropriately, please refer to the guidelines for securing an init.d service.

57.2 Microsoft Windows services
Spring Boot application can be started as Windows service using winsw .

A sample maintained separately to the core of Spring Boot describes step-by-step how you can create a Windows service for your Spring Boot application.

58. What to read next
Check out the Cloud Foundry, Heroku, OpenShift and Boxfuse web sites for more information about the kinds of features that a PaaS can offer. These are just four of the
most popular Java PaaS providers, since Spring Boot is so amenable to cloud-based deployment you’re free to consider other providers as well.

The next section goes on to cover the Spring Boot CLI; or you can jump ahead to read about build tool plugins.

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly develop with Spring. It allows you to run Groovy scripts, which means that you have a
familiar Java-like syntax, without so much boilerplate code. You can also bootstrap a new project or write your own command for it.

59. Installing the CLI
The Spring Boot CLI can be installed manually; using SDKMAN! (the SDK Manager) or using Homebrew or MacPorts if you are an OSX user. See Section 10.2,
“Installing the Spring Boot CLI” in the “Getting started” section for comprehensive installation instructions.

60. Using the CLI
Once you have installed the CLI you can run it by typing spring . If you run spring without any arguments, a simple help screen is displayed:

$ spring
usage: spring [--help] [--version]
 <command> [<args>]

Available commands are:

 run [options] <files> [--] [args]
 Run a spring groovy script

... more command help is shown here

You can use help to get more details about any of the supported commands. For example:

$ spring help run
spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Description
------ -----------
--autoconfigure [Boolean] Add autoconfigure compiler
 transformations (default: true)
--classpath, -cp Additional classpath entries
-e, --edit Open the file with the default system
 editor
--no-guess-dependencies Do not attempt to guess dependencies
--no-guess-imports Do not attempt to guess imports
-q, --quiet Quiet logging
-v, --verbose Verbose logging of dependency
 resolution
--watch Watch the specified file for changes

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

101 of 180 05/12/2016 20:33

The version command provides a quick way to check which version of Spring Boot you are using.

$ spring version
Spring CLI v2.0.0.BUILD-SNAPSHOT

60.1 Running applications using the CLI
You can compile and run Groovy source code using the run command. The Spring Boot CLI is completely self-contained so you don’t need any external Groovy
installation.

Here is an example “hello world” web application written in Groovy:

hello.groovy.

@RestController
class WebApplication {

@RequestMapping("/")
 String home() {

"Hello World!"
 }

}

To compile and run the application type:

$ spring run hello.groovy

To pass command line arguments to the application, you need to use a -- to separate them from the “spring” command arguments, e.g.

$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments you can use the JAVA_OPTS environment variable, e.g.

$ JAVA_OPTS=-Xmx1024m spring run hello.groovy

60.1.1 Deduced “grab” dependencies

Standard Groovy includes a @Grab annotation which allows you to declare dependencies on a third-party libraries. This useful technique allows Groovy to download jars
in the same way as Maven or Gradle would, but without requiring you to use a build tool.

Spring Boot extends this technique further, and will attempt to deduce which libraries to “grab” based on your code. For example, since the WebApplication code
above uses @RestController annotations, “Tomcat” and “Spring MVC” will be grabbed.

The following items are used as “grab hints”:

Items Grabs

JdbcTemplate , NamedParameterJdbcTemplate , DataSource JDBC Application.

@EnableJms JMS Application.

@EnableCaching Caching abstraction.

@Test JUnit.

@EnableRabbit RabbitMQ.

@EnableReactor Project Reactor.

extends Specification Spock test.

@EnableBatchProcessing Spring Batch.

@MessageEndpoint @EnableIntegrationPatterns Spring Integration.

@EnableDeviceResolver Spring Mobile.

@Controller @RestController @EnableWebMvc Spring MVC + Embedded Tomcat.

@EnableWebSecurity Spring Security.

@EnableTransactionManagement Spring Transaction Management.

See subclasses of CompilerAutoConfiguration in the Spring Boot CLI source code to understand exactly how customizations are applied.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

102 of 180 05/12/2016 20:33

60.1.2 Deduced “grab” coordinates

Spring Boot extends Groovy’s standard @Grab support by allowing you to specify a dependency without a group or version, for example @Grab('freemarker') .
This will consult Spring Boot’s default dependency metadata to deduce the artifact’s group and version. Note that the default metadata is tied to the version of the CLI that
you’re using – it will only change when you move to a new version of the CLI, putting you in control of when the versions of your dependencies may change. A table
showing the dependencies and their versions that are included in the default metadata can be found in the appendix.

60.1.3 Default import statements

To help reduce the size of your Groovy code, several import statements are automatically included. Notice how the example above refers to @Component ,
@RestController and @RequestMapping without needing to use fully-qualified names or import statements.

Many Spring annotations will work without using import statements. Try running your application to see what fails before adding imports.

60.1.4 Automatic main method

Unlike the equivalent Java application, you do not need to include a public static void main(String[] args) method with your Groovy scripts. A
SpringApplication is automatically created, with your compiled code acting as the source .

60.1.5 Custom dependency management

By default, the CLI uses the dependency management declared in spring-boot-dependencies when resolving @Grab dependencies. Additional dependency
management, that will override the default dependency management, can be configured using the @DependencyManagementBom annotation. The annotation’s value
should specify the coordinates (groupId:artifactId:version) of one or more Maven BOMs.

For example, the following declaration:

@DependencyManagementBom("com.example.custom-bom:1.0.0")

Will pick up custom-bom-1.0.0.pom in a Maven repository under com/example/custom-versions/1.0.0/ .

When multiple BOMs are specified they are applied in the order that they’re declared. For example:

@DependencyManagementBom(["com.example.custom-bom:1.0.0",
"com.example.another-bom:1.0.0"])

indicates that dependency management in another-bom will override the dependency management in custom-bom .

You can use @DependencyManagementBom anywhere that you can use @Grab , however, to ensure consistent ordering of the dependency management, you can
only use @DependencyManagementBom at most once in your application. A useful source of dependency management (that is a superset of Spring Boot’s dependency
management) is the Spring IO Platform, e.g. @DependencyManagementBom('io.spring.platform:platform-bom:1.1.2.RELEASE') .

60.2 Testing your code
The test command allows you to compile and run tests for your application. Typical usage looks like this:

$ spring test app.groovy tests.groovy
Total: 1, Success: 1, : Failures: 0
Passed? true

In this example, tests.groovy contains JUnit @Test methods or Spock Specification classes. All the common framework annotations and static methods
should be available to you without having to import them.

Here is the tests.groovy file that we used above (with a JUnit test):

class ApplicationTests {

@Test
void homeSaysHello() {

 assertEquals("Hello World!", new WebApplication().home())
 }

}

If you have more than one test source files, you might prefer to organize them into a test directory.

60.3 Applications with multiple source files
You can use “shell globbing” with all commands that accept file input. This allows you to easily use multiple files from a single directory, e.g.

$ spring run *.groovy

This technique can also be useful if you want to segregate your “test” or “spec” code from the main application code:

$ spring test app/*.groovy test/*.groovy

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

103 of 180 05/12/2016 20:33

60.4 Packaging your application
You can use the jar command to package your application into a self-contained executable jar file. For example:

$ spring jar my-app.jar *.groovy

The resulting jar will contain the classes produced by compiling the application and all of the application’s dependencies so that it can then be run using java -jar .
The jar file will also contain entries from the application’s classpath. You can add explicit paths to the jar using --include and --exclude (both are comma-
separated, and both accept prefixes to the values “+” and “-” to signify that they should be removed from the defaults). The default includes are

public/**, resources/**, static/**, templates/**, META-INF/**, *

and the default excludes are

.*, repository/**, build/**, target/**, **/*.jar, **/*.groovy

See the output of spring help jar for more information.

60.5 Initialize a new project
The init command allows you to create a new project using start.spring.io without leaving the shell. For example:

$ spring init --dependencies=web,data-jpa my-project
Using service at https://start.spring.io
Project extracted to '/Users/developer/example/my-project'

This creates a my-project directory with a Maven-based project using spring-boot-starter-web and spring-boot-starter-data-jpa . You can list the
capabilities of the service using the --list flag

$ spring init --list
=======================================
Capabilities of https://start.spring.io
=======================================

Available dependencies:

actuator - Actuator: Production ready features to help you monitor and manage your application
...
web - Web: Support for full-stack web development, including Tomcat and spring-webmvc
websocket - Websocket: Support for WebSocket development
ws - WS: Support for Spring Web Services

Available project types:

gradle-build - Gradle Config [format:build, build:gradle]
gradle-project - Gradle Project [format:project, build:gradle]
maven-build - Maven POM [format:build, build:maven]
maven-project - Maven Project [format:project, build:maven] (default)

...

The init command supports many options, check the help output for more details. For instance, the following command creates a gradle project using Java 8 and
war packaging:

$ spring init --build=gradle --java-version=1.8 --dependencies=websocket --packaging=war sample-app.zip
Using service at https://start.spring.io
Content saved to 'sample-app.zip'

60.6 Using the embedded shell
Spring Boot includes command-line completion scripts for BASH and zsh shells. If you don’t use either of these shells (perhaps you are a Windows user) then you can
use the shell command to launch an integrated shell.

$ spring shell
Spring Boot (v2.0.0.BUILD-SNAPSHOT)
Hit TAB to complete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell you can run other commands directly:

$ version
Spring CLI v2.0.0.BUILD-SNAPSHOT

The embedded shell supports ANSI color output as well as tab completion. If you need to run a native command you can use the ! prefix. Hitting ctrl-c will exit the
embedded shell.

60.7 Adding extensions to the CLI
You can add extensions to the CLI using the install command. The command takes one or more sets of artifact coordinates in the format
group:artifact:version . For example:

$ spring install com.example:spring-boot-cli-extension:1.0.0.RELEASE

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

104 of 180 05/12/2016 20:33

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts' dependencies will also be installed.

To uninstall a dependency use the uninstall command. As with the install command, it takes one or more sets of artifact coordinates in the format
group:artifact:version . For example:

$ spring uninstall com.example:spring-boot-cli-extension:1.0.0.RELEASE

It will uninstall the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies you can use the --all option. For example:

$ spring uninstall --all

61. Developing application with the Groovy beans DSL
Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can embed bean definitions in your Groovy application scripts using the
same format. This is sometimes a good way to include external features like middleware declarations. For example:

@Configuration
class Application implements CommandLineRunner {

@Autowired
 SharedService service

@Override
void run(String... args) {

 println service.message
 }

}

import my.company.SharedService

beans {
 service(SharedService) {
 message = "Hello World"
 }
}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or you can put the beans DSL in a separate file if you prefer.

62. Configuring the CLI with settings.xml
The Spring Boot CLI uses Aether, Maven’s dependency resolution engine, to resolve dependencies. The CLI makes use of the Maven configuration found in
~/.m2/settings.xml to configure Aether. The following configuration settings are honored by the CLI:

Offline
Mirrors
Servers
Proxies
Profiles

Activation
Repositories

Active profiles

Please refer to Maven’s settings documentation for further information.

63. What to read next
There are some sample groovy scripts available from the GitHub repository that you can use to try out the Spring Boot CLI. There is also extensive Javadoc throughout
the source code.

If you find that you reach the limit of the CLI tool, you will probably want to look at converting your application to full Gradle or Maven built “groovy project”. The next
section covers Spring Boot’s Build tool plugins that you can use with Gradle or Maven.

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features, including the packaging of executable jars. This section provides
more details on both plugins, as well as some help should you need to extend an unsupported build system. If you are just getting started, you might want to read
“Chapter 13, Build systems” from the Part III, “Using Spring Boot” section first.

64. Spring Boot Maven plugin
The Spring Boot Maven Plugin provides Spring Boot support in Maven, allowing you to package executable jar or war archives and run an application “in-place”. To use it
you must be using Maven 3.2 (or better).

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

105 of 180 05/12/2016 20:33

Refer to the Spring Boot Maven Plugin Site for complete plugin documentation.

64.1 Including the plugin
To use the Spring Boot Maven Plugin simply include the appropriate XML in the plugins section of your pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<!-- ... -->
<build>

<plugins>
<plugin>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<executions>

<execution>
<goals>

<goal>repackage</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

This configuration will repackage a jar or war that is built during the package phase of the Maven lifecycle. The following example shows both the repackaged jar, as
well as the original jar, in the target directory:

$ mvn package
$ ls target/*.jar
target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you don’t include the <execution/> configuration as above, you can run the plugin on its own (but only if the package goal is used as well). For example:

$ mvn package spring-boot:repackage
$ ls target/*.jar
target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you are using a milestone or snapshot release you will also need to add appropriate pluginRepository elements:

<pluginRepositories>
<pluginRepository>

<id>spring-snapshots</id>
<url>http://repo.spring.io/snapshot</url>

</pluginRepository>
<pluginRepository>

<id>spring-milestones</id>
<url>http://repo.spring.io/milestone</url>

</pluginRepository>
</pluginRepositories>

64.2 Packaging executable jar and war files
Once spring-boot-maven-plugin has been included in your pom.xml it will automatically attempt to rewrite archives to make them executable using the
spring-boot:repackage goal. You should configure your project to build a jar or war (as appropriate) using the usual packaging element:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<!-- ... -->
<packaging>jar</packaging>
<!-- ... -->

</project>

Your existing archive will be enhanced by Spring Boot during the package phase. The main class that you want to launch can either be specified using a configuration
option, or by adding a Main-Class attribute to the manifest in the usual way. If you don’t specify a main class the plugin will search for a class with a
public static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ mvn package
$ java -jar target/mymodule-0.0.1-SNAPSHOT.jar

To build a war file that is both executable and deployable into an external container you need to mark the embedded container dependencies as “provided”, e.g:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<!-- ... -->

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

106 of 180 05/12/2016 20:33

<packaging>war</packaging>
<!-- ... -->
<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>

</dependency>
<!-- ... -->

</dependencies>
</project>

See the “Section 83.1, “Create a deployable war file”” section for more details on how to create a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

65. Spring Boot Gradle plugin
The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package executable jar or war archives, run Spring Boot applications and use the
dependency management provided by spring-boot-dependencies .

65.1 Including the plugin
To use the Spring Boot Gradle Plugin simply include a buildscript dependency and apply the spring-boot plugin:

buildscript {
 repositories {
 maven { url 'http://repo.spring.io/snapshot' }
 maven { url 'http://repo.spring.io/milestone' }
 }
 dependencies {
 classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.0.0.BUILD-SNAPSHOT''
 }
}
apply plugin: 'org.springframework.boot'

65.2 Gradle dependency management
The spring-boot plugin automatically applies the Dependency Management Plugin and configures it to import the spring-boot-starter-parent bom. This
provides a similar dependency management experience to the one that is enjoyed by Maven users. For example, it allows you to omit version numbers when declaring
dependencies that are managed in the bom. To make use of this functionality, simply declare dependencies in the usual way, but leave the version number empty:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 compile("org.thymeleaf:thymeleaf-spring4")
 compile("nz.net.ultraq.thymeleaf:thymeleaf-layout-dialect")
}

The version of the spring-boot gradle plugin that you declare determines the version of the spring-boot-starter-parent bom that is imported
(this ensures that builds are always repeatable). You should always set the version of the spring-boot gradle plugin to the actual Spring Boot version
that you wish to use. Details of the versions that are provided can be found in the appendix.

The dependency management plugin will only supply a version where one is not specified. To use a version of an artifact that differs from the one that the plugin would
provide, simply specify the version when you declare the dependency as you usually would. For example:

dependencies {
 compile("org.thymeleaf:thymeleaf-spring4:2.1.1.RELEASE")
}

To learn more about the capabilities of the Dependency Management Plugin, please refer to its documentation.

65.3 Packaging executable jar and war files
Once the spring-boot plugin has been applied to your project it will automatically attempt to rewrite archives to make them executable using the bootRepackage
task. You should configure your project to build a jar or war (as appropriate) in the usual way.

The main class that you want to launch can either be specified using a configuration option, or by adding a Main-Class attribute to the manifest. If you don’t specify a
main class the plugin will search for a class with a public static void main(String[] args) method.

Check Section 65.6, “Repackage configuration” for a full list of configuration options.

To build and run a project artifact, you can type the following:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

107 of 180 05/12/2016 20:33

$ gradle build
$ java -jar build/libs/mymodule-0.0.1-SNAPSHOT.jar

To build a war file that is both executable and deployable into an external container, you need to mark the embedded container dependencies as belonging to the war
plugin’s providedRuntime configuration, e.g.:

...
apply plugin: 'war'

war {
 baseName = 'myapp'
 version = '0.5.0'
}

repositories {
 jcenter()
 maven { url "http://repo.spring.io/libs-snapshot" }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")
 ...
}

See the “Section 83.1, “Create a deployable war file”” section for more details on how to create a deployable war file.

65.4 Running a project in-place
To run a project in place without building a jar first you can use the “bootRun” task:

$ gradle bootRun

If devtools has been added to your project it will automatically monitor your application for changes. Alternatively, you can also run the application so that your static
classpath resources (i.e. in src/main/resources by default) are reloadable in the live application, which can be helpful at development time.

bootRun {
 addResources = true
}

Making static classpath resources reloadable means that bootRun does not use the output of the processResources task, i.e., when invoked using bootRun , your
application will use the resources in their unprocessed form.

65.5 Spring Boot plugin configuration
The gradle plugin automatically extends your build script DSL with a springBoot element for global configuration of the Boot plugin. Set the appropriate properties as
you would with any other Gradle extension (see below for a list of configuration options):

springBoot {
 backupSource = false
}

65.6 Repackage configuration
The plugin adds a bootRepackage task which you can also configure directly, e.g.:

bootRepackage {
 mainClass = 'demo.Application'
}

The following configuration options are available:

Name Description

enabled Boolean flag to switch the repackager off (sometimes useful if you want the other Boot features but not this one)

mainClass The main class that should be run. If not specified, and you have applied the application plugin, the mainClassName
project property will be used. If the application plugin has not been applied or no mainClassName has been specified,
the archive will be searched for a suitable class. "Suitable" means a unique class with a well-formed main() method
(if more than one is found the build will fail). If you have applied the application plugin, the main class can also be
specified via its "run" task (main property) and/or its "startScripts" task (mainClassName property) as an alternative
to using the "springBoot" configuration.

classifier A file name segment (before the extension) to add to the archive, so that the original is preserved in its original location.
Defaults to null in which case the archive is repackaged in place. The default is convenient for many purposes, but if
you want to use the original jar as a dependency in another project you must use a classifier to define the executable
archive.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

108 of 180 05/12/2016 20:33

Name Description

withJarTask The name or value of the Jar task (defaults to all tasks of type Jar) which is used to locate the archive to repackage.

customConfiguration The name of the custom configuration which is used to populate the nested lib directory (without specifying this you get
all compile and runtime dependencies).

executable Boolean flag to indicate if jar files are fully executable on Unix like operating systems. Defaults to false .

embeddedLaunchScript The embedded launch script to prepend to the front of the jar if it is fully executable. If not specified the 'Spring Boot'
default script will be used.

embeddedLaunchScriptProperties Additional properties that to be expanded in the launch script. The default script supports a mode property which can
contain the values auto , service or run .

excludeDevtools Boolean flag to indicate if the devtools jar should be excluded from the repackaged archives. Defaults to true .

65.7 Repackage with custom Gradle configuration
Sometimes it may be more appropriate to not package default dependencies resolved from compile , runtime and provided scopes. If the created executable jar
file is intended to be run as it is, you need to have all dependencies nested inside it; however, if the plan is to explode a jar file and run the main class manually, you may
already have some of the libraries available via CLASSPATH . This is a situation where you can repackage your jar with a different set of dependencies.

Using a custom configuration will automatically disable dependency resolving from compile , runtime and provided scopes. Custom configuration can be either
defined globally (inside the springBoot section) or per task.

task clientJar(type: Jar) {
 appendix = 'client'
 from sourceSets.main.output
 exclude('**/*Something*')
}

task clientBoot(type: BootRepackage, dependsOn: clientJar) {
 withJarTask = clientJar
 customConfiguration = "mycustomconfiguration"
}

In above example, we created a new clientJar Jar task to package a customized file set from your compiled sources. Then we created a new clientBoot
BootRepackage task and instructed it to work with only clientJar task and mycustomconfiguration .

configurations {
 mycustomconfiguration.exclude group: 'log4j'
}

dependencies {
 mycustomconfiguration configurations.runtime
}

The configuration that we are referring to in BootRepackage is a normal Gradle configuration. In the above example we created a new configuration named
mycustomconfiguration instructing it to derive from a runtime and exclude the log4j group. If the clientBoot task is executed, the repackaged boot jar will
have all dependencies from runtime but no log4j jars.

65.7.1 Configuration options

The following configuration options are available:

Name Description

mainClass The main class that should be run by the executable archive.

providedConfiguration The name of the provided configuration (defaults to providedRuntime).

backupSource If the original source archive should be backed-up before being repackaged (defaults to true).

customConfiguration The name of the custom configuration.

layout The type of archive, corresponding to how the dependencies are laid out inside (defaults to a guess based on the archive type). See
available layouts for more details.

'layoutFactory` A layout factory that can be used if a custom layout is required. Alternative layouts can be provided by 3rd parties. Layout factories
are only used when layout is not specified.

requiresUnpack A list of dependencies (in the form “groupId:artifactId” that must be unpacked from fat jars in order to run. Items are still packaged
into the fat jar, but they will be automatically unpacked when it runs.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

109 of 180 05/12/2016 20:33

65.7.2 Available layouts

The layout attribute configures the format of the archive and whether the bootstrap loader should be included or not. The following layouts are available:

Name Description Executable

JAR Regular executable JAR layout. Yes

WAR Executable WAR layout. provided dependencies are placed in WEB-INF/lib-provided to avoid any clash when the war
is deployed in a servlet container.

Yes

ZIP (alias to
DIR)

Similar to JAR layout, using PropertiesLauncher . Yes

MODULE Bundle dependencies (excluding those with provided scope) and project resources. No

NONE Bundle all dependencies and project resources. No

65.7.3 Using a custom layout

If you have custom requirements for how to arrange the dependencies and loader classes inside the repackaged jar, you can use a custom layout. Any library which
defines one or more LayoutFactory implementations can be added to the build script dependencies and then the layout factory becomes available in the
springBoot configuration. For example:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath("org.springframework.boot:spring-boot-gradle-plugin:2.0.0.BUILD-SNAPSHOT")
classpath("com.example:custom-layout:1.0.0")

}
}

springBoot {
 layoutFactory = new com.example.CustomLayoutFactory()
}

If there is only one custom LayoutFactory on the build classpath and it is listed in META-INF/spring.factories then it is unnecessary to explicitly
set it in the springBoot configuration. Layout factories are only used when no explicit layout is specified.

65.8 Understanding how the Gradle plugin works
When spring-boot is applied to your Gradle project a default task named bootRepackage is created automatically. The bootRepackage task depends on Gradle
assemble task, and when executed, it tries to find all jar artifacts whose qualifier is empty (i.e. tests and sources jars are automatically skipped).

Due to the fact that bootRepackage finds 'all' created jar artifacts, the order of Gradle task execution is important. Most projects only create a single jar file, so usually
this is not an issue; however, if you are planning to create a more complex project setup, with custom Jar and BootRepackage tasks, there are few tweaks to
consider.

If you are 'just' creating custom jar files from your project you can simply disable default jar and bootRepackage tasks:

jar.enabled = false
bootRepackage.enabled = false

Another option is to instruct the default bootRepackage task to only work with a default jar task.

bootRepackage.withJarTask = jar

If you have a default project setup where the main jar file is created and repackaged, 'and' you still want to create additional custom jars, you can combine your custom
repackage tasks together and use dependsOn so that the bootJars task will run after the default bootRepackage task is executed:

task bootJars
bootJars.dependsOn = [clientBoot1,clientBoot2,clientBoot3]
build.dependsOn(bootJars)

All the above tweaks are usually used to avoid situations where an already created boot jar is repackaged again. Repackaging an existing boot jar will not break anything,
but you may find that it includes unnecessary dependencies.

65.9 Publishing artifacts to a Maven repository using Gradle
If you are declaring dependencies without versions and you want to publish artifacts to a Maven repository you will need to configure the Maven publication with details of
Spring Boot’s dependency management. This can be achieved by configuring it to publish poms that inherit from spring-boot-starter-parent or that import
dependency management from spring-boot-dependencies . The exact details of this configuration depend on how you’re using Gradle and how you’re trying to
publish the artifacts.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

110 of 180 05/12/2016 20:33

65.9.1 Configuring Gradle to produce a pom that inherits dependency management

The following is an example of configuring Gradle to generate a pom that inherits from spring-boot-starter-parent . Please refer to the Gradle User Guide for
further information.

uploadArchives {
 repositories {
 mavenDeployer {
 pom {
 project {
 parent {
 groupId "org.springframework.boot"
 artifactId "spring-boot-starter-parent"
 version "2.0.0.BUILD-SNAPSHOT"
 }
 }
 }
 }
 }
}

65.9.2 Configuring Gradle to produce a pom that imports dependency management

The following is an example of configuring Gradle to generate a pom that imports the dependency management provided by spring-boot-dependencies . Please
refer to the Gradle User Guide for further information.

uploadArchives {
 repositories {
 mavenDeployer {
 pom {
 project {
 dependencyManagement {
 dependencies {
 dependency {
 groupId "org.springframework.boot"
 artifactId "spring-boot-dependencies"
 version "2.0.0.BUILD-SNAPSHOT"
 type "pom"
 scope "import"
 }
 }
 }
 }
 }
 }
 }
}

66. Spring Boot AntLib module
The Spring Boot AntLib module provides basic Spring Boot support for Apache Ant. You can use the module to create executable jars. To use the module you need to
declare an additional spring-boot namespace in your build.xml :

<project xmlns:ivy="antlib:org.apache.ivy.ant"
xmlns:spring-boot="antlib:org.springframework.boot.ant"
name="myapp" default="build">

 ...
</project>

You’ll need to remember to start Ant using the -lib option, for example:

$ ant -lib <folder containing spring-boot-antlib-2.0.0.BUILD-SNAPSHOT.jar>

The “Using Spring Boot” section includes a more complete example of using Apache Ant with spring-boot-antlib

66.1 Spring Boot Ant tasks
Once the spring-boot-antlib namespace has been declared, the following additional tasks are available.

66.1.1 spring-boot:exejar

The exejar task can be used to creates a Spring Boot executable jar. The following attributes are supported by the task:

Attribute Description Required

destfile The destination jar file to create Yes

classes The root directory of Java class files Yes

start-class The main application class to run No (default is first class found declaring a main method)

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

111 of 180 05/12/2016 20:33

The following nested elements can be used with the task:

Element Description

resources One or more Resource Collections describing a set of Resources that should be added to the content of the created jar file.

lib One or more Resource Collections that should be added to the set of jar libraries that make up the runtime dependency classpath of the application.

66.1.2 Examples

Specify start-class.

<spring-boot:exejar destfile="target/my-application.jar"
classes="target/classes" start-class="com.foo.MyApplication">

<resources>
<fileset dir="src/main/resources" />

</resources>
<lib>

<fileset dir="lib" />
</lib>

</spring-boot:exejar>

Detect start-class.

<exejar destfile="target/my-application.jar" classes="target/classes">
<lib>

<fileset dir="lib" />
</lib>

</exejar>

66.2 spring-boot:findmainclass
The findmainclass task is used internally by exejar to locate a class declaring a main . You can also use this task directly in your build if needed. The following
attributes are supported

Attribute Description Required

classesroot The root directory of Java class files Yes (unless mainclass is specified)

mainclass Can be used to short-circuit the main class search No

property The Ant property that should be set with the result No (result will be logged if unspecified)

66.2.1 Examples

Find and log.

<findmainclass classesroot="target/classes" />

Find and set.

<findmainclass classesroot="target/classes" property="main-class" />

Override and set.

<findmainclass mainclass="com.foo.MainClass" property="main-class" />

67. Supporting other build systems
If you want to use a build tool other than Maven, Gradle or Ant, you will likely need to develop your own plugin. Executable jars need to follow a specific format and certain
entries need to be written in an uncompressed form (see the executable jar format section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spring-boot-loader-tools to actually generate jars. You are also free to use this library directly
yourself if you need to.

67.1 Repackaging archives
To repackage an existing archive so that it becomes a self-contained executable archive use org.springframework.boot.loader.tools.Repackager . The
Repackager class takes a single constructor argument that refers to an existing jar or war archive. Use one of the two available repackage() methods to either
replace the original file or write to a new destination. Various settings can also be configured on the repackager before it is run.

67.2 Nested libraries
When repackaging an archive you can include references to dependency files using the org.springframework.boot.loader.tools.Libraries interface. We
don’t provide any concrete implementations of Libraries here as they are usually build system specific.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

112 of 180 05/12/2016 20:33

67.3 Finding a main class
If you don’t use Repackager.setMainClass() to specify a main class, the repackager will use ASM to read class files and attempt to find a suitable class with a
public static void main(String[] args) method. An exception is thrown if more than one candidate is found.

67.4 Example repackage implementation
Here is a typical example repackage:

Repackager repackager = new Repackager(sourceJarFile);
repackager.setBackupSource(false);
repackager.repackage(new Libraries() {

@Override
public void doWithLibraries(LibraryCallback callback) throws IOException {

// Build system specific implementation, callback for each dependency
// callback.library(new Library(nestedFile, LibraryScope.COMPILE));

 }
 });

68. What to read next
If you’re interested in how the build tool plugins work you can look at the spring-boot-tools module on GitHub. More technical details of the executable jar format
are covered in the appendix.

If you have specific build-related questions you can check out the “how-to” guides.

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do I do that…’ type of questions that often arise when using Spring Boot. This is by no means an exhaustive list, but
it does cover quite a lot.

If you are having a specific problem that we don’t cover here, you might want to check out stackoverflow.com to see if someone has already provided an answer; this is
also a great place to ask new questions (please use the spring-boot tag).

We’re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a pull request.

69. Spring Boot application

69.1 Create your own FailureAnalyzer
FailureAnalyzer is a great way to intercept an exception on startup and turn it into a human-readable message, wrapped into a FailureAnalysis . Spring Boot
provides such analyzer for application context related exceptions, JSR-303 validations and more. It is actually very easy to create your own.

AbstractFailureAnalyzer is a convenient extension of FailureAnalyzer that checks the presence of a specified exception type in the exception to handle. You
can extend from that so that your implementation gets a chance to handle the exception only when it is actually present. If for whatever reason you can’t handle the
exception, return null to give another implementation a chance to handle the exception.

FailureAnalyzer implementations are to be registered in a META-INF/spring.factories : the following registers
ProjectConstraintViolationFailureAnalyzer :

org.springframework.boot.diagnostics.FailureAnalyzer=\
com.example.ProjectConstraintViolationFailureAnalyzer

69.2 Troubleshoot auto-configuration
The Spring Boot auto-configuration tries its best to ‘do the right thing’, but sometimes things fail and it can be hard to tell why.

There is a really useful ConditionEvaluationReport available in any Spring Boot ApplicationContext . You will see it if you enable DEBUG logging output. If
you use the spring-boot-actuator there is also an autoconfig endpoint that renders the report in JSON. Use that to debug the application and see what
features have been added (and which not) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the Javadoc. Some rules of thumb:

Look for classes called *AutoConfiguration and read their sources, in particular the @Conditional* annotations to find out what features they enable and
when. Add --debug to the command line or a System property -Ddebug to get a log on the console of all the auto-configuration decisions that were made in your
app. In a running Actuator app look at the autoconfig endpoint (‘/autoconfig’ or the JMX equivalent) for the same information.
Look for classes that are @ConfigurationProperties (e.g. ServerProperties) and read from there the available external configuration options. The
@ConfigurationProperties has a name attribute which acts as a prefix to external properties, thus ServerProperties has prefix="server" and its
configuration properties are server.port , server.address etc. In a running Actuator app look at the configprops endpoint.
Look for use of RelaxedPropertyResolver to pull configuration values explicitly out of the Environment . It often is used with a prefix.
Look for @Value annotations that bind directly to the Environment . This is less flexible than the RelaxedPropertyResolver approach, but does allow some
relaxed binding, specifically for OS environment variables (so CAPITALS_AND_UNDERSCORES are synonyms for period.separated).

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

113 of 180 05/12/2016 20:33

Look for @ConditionalOnExpression annotations that switch features on and off in response to SpEL expressions, normally evaluated with placeholders
resolved from the Environment .

69.3 Customize the Environment or ApplicationContext before it starts
A SpringApplication has ApplicationListeners and ApplicationContextInitializers that are used to apply customizations to the context or
environment. Spring Boot loads a number of such customizations for use internally from META-INF/spring.factories . There is more than one way to register
additional ones:

Programmatically per application by calling the addListeners and addInitializers methods on SpringApplication before you run it.
Declaratively per application by setting context.initializer.classes or context.listener.classes .
Declaratively for all applications by adding a META-INF/spring.factories and packaging a jar file that the applications all use as a library.

The SpringApplication sends some special ApplicationEvents to the listeners (even some before the context is created), and then registers the listeners for
events published by the ApplicationContext as well. See Section 23.5, “Application events and listeners” in the ‘Spring Boot features’ section for a complete list.

It is also possible to customize the Environment before the application context is refreshed using EnvironmentPostProcessor . Each implementation should be
registered in META-INF/spring.factories :

org.springframework.boot.env.EnvironmentPostProcessor=com.example.YourEnvironmentPostProcessor

69.4 Build an ApplicationContext hierarchy (adding a parent or root context)
You can use the ApplicationBuilder class to create parent/child ApplicationContext hierarchies. See Section 23.4, “Fluent builder API” in the ‘Spring Boot
features’ section for more information.

69.5 Create a non-web application
Not all Spring applications have to be web applications (or web services). If you want to execute some code in a main method, but also bootstrap a Spring application to
set up the infrastructure to use, then it’s easy with the SpringApplication features of Spring Boot. A SpringApplication changes its ApplicationContext
class depending on whether it thinks it needs a web application or not. The first thing you can do to help it is to just leave the servlet API dependencies off the classpath.
If you can’t do that (e.g. you are running 2 applications from the same code base) then you can explicitly call setWebEnvironment(false) on your
SpringApplication instance, or set the applicationContextClass property (through the Java API or with external properties). Application code that you want
to run as your business logic can be implemented as a CommandLineRunner and dropped into the context as a @Bean definition.

70. Properties & configuration

70.1 Automatically expand properties at build time
Rather than hardcoding some properties that are also specified in your project’s build configuration, you can automatically expand them using the existing build
configuration instead. This is possible in both Maven and Gradle.

70.1.1 Automatic property expansion using Maven

You can automatically expand properties from the Maven project using resource filtering. If you use the spring-boot-starter-parent you can then refer to your
Maven ‘project properties’ via @..@ placeholders, e.g.

app.encoding=@project.build.sourceEncoding@
app.java.version=@java.version@

The spring-boot:run can add src/main/resources directly to the classpath (for hot reloading purposes) if you enable the addResources flag.
This circumvents the resource filtering and this feature. You can use the exec:java goal instead or customize the plugin’s configuration, see the plugin
usage page for more details.

If you don’t use the starter parent, in your pom.xml you need (inside the <build/> element):

<resources>
<resource>

<directory>src/main/resources</directory>
<filtering>true</filtering>

</resource>
</resources>

and (inside <plugins/>):

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>2.7</version>
<configuration>

<delimiters>
<delimiter>@</delimiter>

</delimiters>
<useDefaultDelimiters>false</useDefaultDelimiters>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

114 of 180 05/12/2016 20:33

</configuration>
</plugin>

The useDefaultDelimiters property is important if you are using standard Spring placeholders in your configuration (e.g. ${foo}). These may be
expanded by the build if that property is not set to false .

70.1.2 Automatic property expansion using Gradle

You can automatically expand properties from the Gradle project by configuring the Java plugin’s processResources task to do so:

processResources {
 expand(project.properties)
}

You can then refer to your Gradle project’s properties via placeholders, e.g.

app.name=${name}
app.description=${description}

Gradle’s expand method uses Groovy’s SimpleTemplateEngine which transforms ${..} tokens. The ${..} style conflicts with Spring’s own
property placeholder mechanism. To use Spring property placeholders together with automatic expansion the Spring property placeholders need to be
escaped like \${..} .

70.2 Externalize the configuration of SpringApplication
A SpringApplication has bean properties (mainly setters) so you can use its Java API as you create the application to modify its behavior. Or you can externalize
the configuration using properties in spring.main.* . E.g. in application.properties you might have.

spring.main.web-environment=false
spring.main.banner-mode=off

and then the Spring Boot banner will not be printed on startup, and the application will not be a web application.

The example above also demonstrates how flexible binding allows the use of underscores (_) as well as dashes (-) in property names.

Properties defined in external configuration overrides the values specified via the Java API with the notable exception of the sources used to create the
ApplicationContext . Let’s consider this application

new SpringApplicationBuilder()
 .bannerMode(Banner.Mode.OFF)
 .sources(demo.MyApp.class)
 .run(args);

used with the following configuration:

spring.main.sources=com.acme.Config,com.acme.ExtraConfig
spring.main.banner-mode=console

The actual application will now show the banner (as overridden by configuration) and use three sources for the ApplicationContext (in that order): demo.MyApp ,
com.acme.Config , com.acme.ExtraConfig .

70.3 Change the location of external properties of an application
By default properties from different sources are added to the Spring Environment in a defined order (see Chapter 24, Externalized Configuration in the ‘Spring Boot
features’ section for the exact order).

A nice way to augment and modify this is to add @PropertySource annotations to your application sources. Classes passed to the SpringApplication static
convenience methods, and those added using setSources() are inspected to see if they have @PropertySources , and if they do, those properties are added to
the Environment early enough to be used in all phases of the ApplicationContext lifecycle. Properties added in this way have lower priority than any added
using the default locations (e.g. application.properties), system properties, environment variables or the command line.

You can also provide System properties (or environment variables) to change the behavior:

spring.config.name (SPRING_CONFIG_NAME), defaults to application as the root of the file name.
spring.config.location (SPRING_CONFIG_LOCATION) is the file to load (e.g. a classpath resource or a URL). A separate Environment property source
is set up for this document and it can be overridden by system properties, environment variables or the command line.

No matter what you set in the environment, Spring Boot will always load application.properties as described above. If YAML is used then files with the ‘.yml’
extension are also added to the list by default.

Spring Boot logs the configuration files that are loaded at DEBUG level and the candidates it has not found at TRACE level.

See ConfigFileApplicationListener for more detail.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

115 of 180 05/12/2016 20:33

70.4 Use ‘short’ command line arguments
Some people like to use (for example) --port=9000 instead of --server.port=9000 to set configuration properties on the command line. You can easily enable
this by using placeholders in application.properties , e.g.

server.port=${port:8080}

If you are inheriting from the spring-boot-starter-parent POM, the default filter token of the maven-resources-plugins has been changed
from ${*} to @ (i.e. @maven.token@ instead of ${maven.token}) to prevent conflicts with Spring-style placeholders. If you have enabled maven
filtering for the application.properties directly, you may want to also change the default filter token to use other delimiters.

In this specific case the port binding will work in a PaaS environment like Heroku and Cloud Foundry, since in those two platforms the PORT environment
variable is set automatically and Spring can bind to capitalized synonyms for Environment properties.

70.5 Use YAML for external properties
YAML is a superset of JSON and as such is a very convenient syntax for storing external properties in a hierarchical format. E.g.

spring:
 application:
 name: cruncher
 datasource:
 driverClassName: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost/test
server:
 port: 9000

Create a file called application.yml and stick it in the root of your classpath, and also add snakeyaml to your dependencies (Maven coordinates
org.yaml:snakeyaml , already included if you use the spring-boot-starter). A YAML file is parsed to a Java Map<String,Object> (like a JSON object),
and Spring Boot flattens the map so that it is 1-level deep and has period-separated keys, a lot like people are used to with Properties files in Java.

The example YAML above corresponds to an application.properties file

spring.application.name=cruncher
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost/test
server.port=9000

See Section 24.6, “Using YAML instead of Properties” in the ‘Spring Boot features’ section for more information about YAML.

70.6 Set the active Spring profiles
The Spring Environment has an API for this, but normally you would set a System property (spring.profiles.active) or an OS environment variable
(SPRING_PROFILES_ACTIVE). E.g. launch your application with a -D argument (remember to put it before the main class or jar archive):

$ java -jar -Dspring.profiles.active=production demo-0.0.1-SNAPSHOT.jar

In Spring Boot you can also set the active profile in application.properties , e.g.

spring.profiles.active=production

A value set this way is replaced by the System property or environment variable setting, but not by the SpringApplicationBuilder.profiles() method. Thus the
latter Java API can be used to augment the profiles without changing the defaults.

See Chapter 25, Profiles in the ‘Spring Boot features’ section for more information.

70.7 Change configuration depending on the environment
A YAML file is actually a sequence of documents separated by --- lines, and each document is parsed separately to a flattened map.

If a YAML document contains a spring.profiles key, then the profiles value (comma-separated list of profiles) is fed into the Spring
Environment.acceptsProfiles() and if any of those profiles is active that document is included in the final merge (otherwise not).

Example:

server:
 port: 9000

spring:
 profiles: development
server:
 port: 9001

spring:
 profiles: production

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

116 of 180 05/12/2016 20:33

server:
 port: 0

In this example the default port is 9000, but if the Spring profile ‘development’ is active then the port is 9001, and if ‘production’ is active then it is 0.

The YAML documents are merged in the order they are encountered (so later values override earlier ones).

To do the same thing with properties files you can use application-${profile}.properties to specify profile-specific values.

70.8 Discover built-in options for external properties
Spring Boot binds external properties from application.properties (or .yml) (and other places) into an application at runtime. There is not (and technically
cannot be) an exhaustive list of all supported properties in a single location because contributions can come from additional jar files on your classpath.

A running application with the Actuator features has a configprops endpoint that shows all the bound and bindable properties available through
@ConfigurationProperties .

The appendix includes an application.properties example with a list of the most common properties supported by Spring Boot. The definitive list comes from
searching the source code for @ConfigurationProperties and @Value annotations, as well as the occasional use of RelaxedPropertyResolver .

71. Embedded servlet containers

71.1 Add a Servlet, Filter or Listener to an application
There are two ways to add Servlet , Filter , ServletContextListener and the other listeners supported by the Servlet spec to your application. You can either
provide Spring beans for them, or enable scanning for Servlet components.

71.1.1 Add a Servlet, Filter or Listener using a Spring bean

To add a Servlet , Filter , or Servlet *Listener provide a @Bean definition for it. This can be very useful when you want to inject configuration or dependencies.
However, you must be very careful that they don’t cause eager initialization of too many other beans because they have to be installed in the container very early in the
application lifecycle (e.g. it’s not a good idea to have them depend on your DataSource or JPA configuration). You can work around restrictions like that by initializing
them lazily when first used instead of on initialization.

In the case of Filters and Servlets you can also add mappings and init parameters by adding a FilterRegistrationBean or
ServletRegistrationBean instead of or as well as the underlying component.

If no dispatcherType is specified on a filter registration, it will match FORWARD , INCLUDE and REQUEST . If async has been enabled, it will match
ASYNC as well.
If you are migrating a filter that has no dispatcher element in web.xml you will need to specify a dispatcherType yourself:

@Bean
public FilterRegistrationBean myFilterRegistration() {
 FilterRegistrationBean registration = new FilterRegistrationBean();
 registration.setDispatcherTypes(DispatcherType.REQUEST);

return registration;
}

Disable registration of a Servlet or Filter

As described above any Servlet or Filter beans will be registered with the servlet container automatically. To disable registration of a particular Filter or
Servlet bean create a registration bean for it and mark it as disabled. For example:

@Bean
public FilterRegistrationBean registration(MyFilter filter) {
 FilterRegistrationBean registration = new FilterRegistrationBean(filter);
 registration.setEnabled(false);

return registration;
}

71.1.2 Add Servlets, Filters, and Listeners using classpath scanning

@WebServlet , @WebFilter , and @WebListener annotated classes can be automatically registered with an embedded servlet container by annotating a
@Configuration class with @ServletComponentScan and specifying the package(s) containing the components that you want to register. By default,
@ServletComponentScan will scan from the package of the annotated class.

71.2 Change the HTTP port
In a standalone application the main HTTP port defaults to 8080 , but can be set with server.port (e.g. in application.properties or as a System property).
Thanks to relaxed binding of Environment values you can also use SERVER_PORT (e.g. as an OS environment variable).

To switch off the HTTP endpoints completely, but still create a WebApplicationContext , use server.port=-1 (this is sometimes useful for testing).

For more details look at Section 27.3.4, “Customizing embedded servlet containers” in the ‘Spring Boot features’ section, or the ServerProperties source code.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

117 of 180 05/12/2016 20:33

71.3 Use a random unassigned HTTP port
To scan for a free port (using OS natives to prevent clashes) use server.port=0 .

71.4 Discover the HTTP port at runtime
You can access the port the server is running on from log output or from the EmbeddedWebApplicationContext via its EmbeddedServletContainer . The best
way to get that and be sure that it has initialized is to add a @Bean of type ApplicationListener<EmbeddedServletContainerInitializedEvent> and pull
the container out of the event when it is published.

Tests that use @SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT) can also inject the actual port into a field using the @LocalServerPort
annotation. For example:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class MyWebIntegrationTests {

@Autowired
 EmbeddedWebApplicationContext server;

@LocalServerPort
int port;

// ...

}

@LocalServerPort is a meta-annotation for @Value("${local.server.port}") . Don’t try to inject the port in a regular application. As we just
saw, the value is only set once the container has initialized; contrary to a test, application code callbacks are processed early (i.e. before the value is
actually available).

71.5 Configure SSL
SSL can be configured declaratively by setting the various server.ssl.* properties, typically in application.properties or application.yml . For example:

server.port=8443
server.ssl.key-store=classpath:keystore.jks
server.ssl.key-store-password=secret
server.ssl.key-password=another-secret

See Ssl for details of all of the supported properties.

Using configuration like the example above means the application will no longer support plain HTTP connector at port 8080. Spring Boot doesn’t support the configuration
of both an HTTP connector and an HTTPS connector via application.properties . If you want to have both then you’ll need to configure one of them
programmatically. It’s recommended to use application.properties to configure HTTPS as the HTTP connector is the easier of the two to configure
programmatically. See the spring-boot-sample-tomcat-multi-connectors sample project for an example.

71.6 Configure Access Logging
Access logs can be configured for Tomcat and Undertow via their respective namespaces.

For instance, the following logs access on Tomcat with a custom pattern.

server.tomcat.basedir=my-tomcat
server.tomcat.accesslog.enabled=true
server.tomcat.accesslog.pattern=%t %a "%r" %s (%D ms)

The default location for logs is a logs directory relative to the tomcat base dir and said directory is a temp directory by default so you may want to fix
Tomcat’s base directory or use an absolute path for the logs. In the example above, the logs will be available in my-tomcat/logs relative to the working
directory of the application.

Access logging for undertow can be configured in a similar fashion

server.undertow.accesslog.enabled=true
server.undertow.accesslog.pattern=%t %a "%r" %s (%D ms)

Logs are stored in a logs directory relative to the working directory of the application. This can be customized via server.undertow.accesslog.directory .

71.7 Use behind a front-end proxy server
Your application might need to send 302 redirects or render content with absolute links back to itself. When running behind a proxy, the caller wants a link to the proxy,
and not to the physical address of the machine hosting your app. Typically such situations are handled via a contract with the proxy, which will add headers to tell the back
end how to construct links to itself.

If the proxy adds conventional X-Forwarded-For and X-Forwarded-Proto headers (most do this out of the box) the absolute links should be rendered correctly as
long as server.use-forward-headers is set to true in your application.properties .

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

118 of 180 05/12/2016 20:33

If your application is running in Cloud Foundry or Heroku the server.use-forward-headers property will default to true if not specified. In all other
instances it defaults to false .

71.7.1 Customize Tomcat’s proxy configuration

If you are using Tomcat you can additionally configure the names of the headers used to carry “forwarded” information:

server.tomcat.remote-ip-header=x-your-remote-ip-header
server.tomcat.protocol-header=x-your-protocol-header

Tomcat is also configured with a default regular expression that matches internal proxies that are to be trusted. By default, IP addresses in 10/8 , 192.168/16 ,
169.254/16 and 127/8 are trusted. You can customize the valve’s configuration by adding an entry to application.properties , e.g.

server.tomcat.internal-proxies=192\\.168\\.\\d{1,3}\\.\\d{1,3}

The double backslashes are only required when you’re using a properties file for configuration. If you are using YAML, single backslashes are sufficient and
a value that’s equivalent to the one shown above would be 192\.168\.\d{1,3}\.\d{1,3} .

You can trust all proxies by setting the internal-proxies to empty (but don’t do this in production).

You can take complete control of the configuration of Tomcat’s RemoteIpValve by switching the automatic one off (i.e. set
server.use-forward-headers=false) and adding a new valve instance in a TomcatEmbeddedServletContainerFactory bean.

71.8 Configure Tomcat
Generally you can follow the advice from Section 70.8, “Discover built-in options for external properties” about @ConfigurationProperties (ServerProperties
is the main one here), but also look at EmbeddedServletContainerCustomizer and various Tomcat-specific *Customizers that you can add in one of those.
The Tomcat APIs are quite rich so once you have access to the TomcatEmbeddedServletContainerFactory you can modify it in a number of ways. Or the nuclear
option is to add your own TomcatEmbeddedServletContainerFactory .

71.9 Enable Multiple Connectors with Tomcat
Add a org.apache.catalina.connector.Connector to the TomcatEmbeddedServletContainerFactory which can allow multiple connectors, e.g. HTTP
and HTTPS connector:

@Bean
public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory tomcat = new TomcatEmbeddedServletContainerFactory();
 tomcat.addAdditionalTomcatConnectors(createSslConnector());

return tomcat;
}

private Connector createSslConnector() {
 Connector connector = new Connector("org.apache.coyote.http11.Http11NioProtocol");
 Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();

try {
 File keystore = new ClassPathResource("keystore").getFile();
 File truststore = new ClassPathResource("keystore").getFile();
 connector.setScheme("https");
 connector.setSecure(true);
 connector.setPort(8443);
 protocol.setSSLEnabled(true);
 protocol.setKeystoreFile(keystore.getAbsolutePath());
 protocol.setKeystorePass("changeit");
 protocol.setTruststoreFile(truststore.getAbsolutePath());
 protocol.setTruststorePass("changeit");
 protocol.setKeyAlias("apitester");

return connector;
 }

catch (IOException ex) {
throw new IllegalStateException("can't access keystore: [" + "keystore"

 + "] or truststore: [" + "keystore" + "]", ex);
 }
}

71.10 Use Tomcat’s LegacyCookieProcessor
The embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie format out of the box, and you may see the following error:

java.lang.IllegalArgumentException: An invalid character [32] was present in the Cookie value

If at all possible, you should consider updating your code to only store values compliant with later Cookie specifications. If, however, you’re unable to change the way that
cookies are written, you can instead configure Tomcat to use a LegacyCookieProcessor . To switch to the LegacyCookieProcessor use an
EmbeddedServletContainerCustomizer bean that adds a TomcatContextCustomizer :

@Bean

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

119 of 180 05/12/2016 20:33

public EmbeddedServletContainerCustomizer cookieProcessorCustomizer() {
return new EmbeddedServletContainerCustomizer() {

@Override
public void customize(ConfigurableEmbeddedServletContainer container) {

if (container instanceof TomcatEmbeddedServletContainerFactory) {
 ((TomcatEmbeddedServletContainerFactory) container)
 .addContextCustomizers(new TomcatContextCustomizer() {

@Override
public void customize(Context context) {

 context.setCookieProcessor(new LegacyCookieProcessor());
 }

 });
 }
 }

 };
}

71.11 Use Jetty instead of Tomcat
The Spring Boot starters (spring-boot-starter-web in particular) use Tomcat as an embedded container by default. You need to exclude those dependencies and
include the Jetty one instead. Spring Boot provides Tomcat and Jetty dependencies bundled together as separate starters to help make this process as easy as possible.

Example in Maven:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>

</dependency>

Example in Gradle:

configurations {
 compile.exclude module: "spring-boot-starter-tomcat"
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:2.0.0.BUILD-SNAPSHOT")
 compile("org.springframework.boot:spring-boot-starter-jetty:2.0.0.BUILD-SNAPSHOT")

// ...
}

71.12 Configure Jetty
Generally you can follow the advice from Section 70.8, “Discover built-in options for external properties” about @ConfigurationProperties (ServerProperties
is the main one here), but also look at EmbeddedServletContainerCustomizer . The Jetty APIs are quite rich so once you have access to the
JettyEmbeddedServletContainerFactory you can modify it in a number of ways. Or the nuclear option is to add your own
JettyEmbeddedServletContainerFactory .

71.13 Use Undertow instead of Tomcat
Using Undertow instead of Tomcat is very similar to using Jetty instead of Tomcat. You need to exclude the Tomcat dependencies and include the Undertow starter
instead.

Example in Maven:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-undertow</artifactId>

</dependency>

Example in Gradle:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

120 of 180 05/12/2016 20:33

configurations {
 compile.exclude module: "spring-boot-starter-tomcat"
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:2.0.0.BUILD-SNAPSHOT")
 compile("org.springframework.boot:spring-boot-starter-undertow:2.0.0.BUILD-SNAPSHOT")

// ...
}

71.14 Configure Undertow
Generally you can follow the advice from Section 70.8, “Discover built-in options for external properties” about @ConfigurationProperties (ServerProperties
and ServerProperties.Undertow are the main ones here), but also look at EmbeddedServletContainerCustomizer . Once you have access to the
UndertowEmbeddedServletContainerFactory you can use an UndertowBuilderCustomizer to modify Undertow’s configuration to meet your needs. Or the
nuclear option is to add your own UndertowEmbeddedServletContainerFactory .

71.15 Enable Multiple Listeners with Undertow
Add an UndertowBuilderCustomizer to the UndertowEmbeddedServletContainerFactory and add a listener to the Builder :

@Bean
public UndertowEmbeddedServletContainerFactory embeddedServletContainerFactory() {
 UndertowEmbeddedServletContainerFactory factory = new UndertowEmbeddedServletContainerFactory();
 factory.addBuilderCustomizers(new UndertowBuilderCustomizer() {

@Override
public void customize(Builder builder) {

 builder.addHttpListener(8080, "0.0.0.0");
 }

 });
return factory;

}

71.16 Use Tomcat 7.x or 8.0
Tomcat 7 & 8.0 work with Spring Boot, but the default is to use Tomcat 8.5. If you cannot use Tomcat 8.5 (for example, because you are using Java 1.6) you will need to
change your classpath to reference a different version.

71.16.1 Use Tomcat 7.x or 8.0 with Maven

If you are using the starters and parent you can change the Tomcat version property and additionally import tomcat-juli . E.g. for a simple webapp or service:

<properties>
<tomcat.version>7.0.59</tomcat.version>

</properties>
<dependencies>
 ...

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.apache.tomcat</groupId>
<artifactId>tomcat-juli</artifactId>
<version>${tomcat.version}</version>

</dependency>
 ...
</dependencies>

71.16.2 Use Tomcat 7.x or 8.0 with Gradle

With Gradle, you can change the Tomcat version by setting the tomcat.version property and then additionally include tomcat-juli :

ext['tomcat.version'] = '7.0.59'
dependencies {
 compile 'org.springframework.boot:spring-boot-starter-web'
 compile group:'org.apache.tomcat', name:'tomcat-juli', version:property('tomcat.version')
}

71.17 Use Jetty 9.2
Jetty 9.2 works with Spring Boot, but the default is to use Jetty 9.3. If you cannot use Jetty 9.3 (for example, because you are using Java 7) you will need to change your
classpath to reference Jetty 9.2.

71.17.1 Use Jetty 9.2 with Maven

If you are using the starters and parent you can just add the Jetty starter and override the jetty.version property:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

121 of 180 05/12/2016 20:33

<properties>
<jetty.version>9.2.17.v20160517</jetty.version>

</properties>
<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>

</dependency>
</dependencies>

71.17.2 Use Jetty 9.2 with Gradle

You can set the jetty.version property. For example, for a simple webapp or service:

ext['jetty.version'] = '9.2.17.v20160517'
dependencies {
 compile ('org.springframework.boot:spring-boot-starter-web') {
 exclude group: 'org.springframework.boot', module: 'spring-boot-starter-tomcat'
 }
 compile ('org.springframework.boot:spring-boot-starter-jetty')
}

71.18 Use Jetty 8
Jetty 8 works with Spring Boot, but the default is to use Jetty 9.3. If you cannot use Jetty 9.3 (for example, because you are using Java 1.6) you will need to change your
classpath to reference Jetty 8. You will also need to exclude Jetty’s WebSocket-related dependencies.

71.18.1 Use Jetty 8 with Maven

If you are using the starters and parent you can just add the Jetty starter with the required WebSocket exclusion and change the version properties, e.g. for a simple
webapp or service:

<properties>
<jetty.version>8.1.15.v20140411</jetty.version>
<jetty-jsp.version>2.2.0.v201112011158</jetty-jsp.version>

</properties>
<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
<exclusions>

<exclusion>
<groupId>org.eclipse.jetty.websocket</groupId>
<artifactId>*</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

71.18.2 Use Jetty 8 with Gradle

You can set the jetty.version property and exclude the WebSocket dependency, e.g. for a simple webapp or service:

ext['jetty.version'] = '8.1.15.v20140411'
dependencies {
 compile ('org.springframework.boot:spring-boot-starter-web') {
 exclude group: 'org.springframework.boot', module: 'spring-boot-starter-tomcat'
 }
 compile ('org.springframework.boot:spring-boot-starter-jetty') {
 exclude group: 'org.eclipse.jetty.websocket'
 }
}

71.19 Create WebSocket endpoints using @ServerEndpoint

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

122 of 180 05/12/2016 20:33

If you want to use @ServerEndpoint in a Spring Boot application that used an embedded container, you must declare a single ServerEndpointExporter
@Bean :

@Bean
public ServerEndpointExporter serverEndpointExporter() {

return new ServerEndpointExporter();
}

This bean will register any @ServerEndpoint annotated beans with the underlying WebSocket container. When deployed to a standalone servlet container this role is
performed by a servlet container initializer and the ServerEndpointExporter bean is not required.

71.20 Enable HTTP response compression
HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled via application.properties :

server.compression.enabled=true

By default, responses must be at least 2048 bytes in length for compression to be performed. This can be configured using the
server.compression.min-response-size property.

By default, responses will only be compressed if their content type is one of the following:

text/html

text/xml

text/plain

text/css

This can be configured using the server.compression.mime-types property.

72. Spring MVC

72.1 Write a JSON REST service
Any Spring @RestController in a Spring Boot application should render JSON response by default as long as Jackson2 is on the classpath. For example:

@RestController
public class MyController {

@RequestMapping("/thing")
public MyThing thing() {

return new MyThing();
 }

}

As long as MyThing can be serialized by Jackson2 (e.g. a normal POJO or Groovy object) then localhost:8080/thing will serve a JSON representation of it by
default. Sometimes in a browser you might see XML responses because browsers tend to send accept headers that prefer XML.

72.2 Write an XML REST service
If you have the Jackson XML extension (jackson-dataformat-xml) on the classpath, it will be used to render XML responses and the very same example as we
used for JSON would work. To use it, add the following dependency to your project:

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>

</dependency>

You may also want to add a dependency on Woodstox. It’s faster than the default StAX implementation provided by the JDK and also adds pretty print support and
improved namespace handling:

<dependency>
<groupId>org.codehaus.woodstox</groupId>
<artifactId>woodstox-core-asl</artifactId>

</dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) will be used, with the additional requirement to have MyThing annotated as
@XmlRootElement :

@XmlRootElement
public class MyThing {

private String name;
// .. getters and setters

}

To get the server to render XML instead of JSON you might have to send an Accept: text/xml header (or use a browser).

72.3 Customize the Jackson ObjectMapper

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

123 of 180 05/12/2016 20:33

Spring MVC (client and server side) uses HttpMessageConverters to negotiate content conversion in an HTTP exchange. If Jackson is on the classpath you already
get the default converter(s) provided by Jackson2ObjectMapperBuilder , an instance of which is auto-configured for you.

The ObjectMapper (or XmlMapper for Jackson XML converter) instance created by default has the following customized properties:

MapperFeature.DEFAULT_VIEW_INCLUSION is disabled
DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled

Spring Boot has also some features to make it easier to customize this behavior.

You can configure the ObjectMapper and XmlMapper instances using the environment. Jackson provides an extensive suite of simple on/off features that can be
used to configure various aspects of its processing. These features are described in six enums in Jackson which map onto properties in the environment:

Jackson enum Environment property

com.fasterxml.jackson.databind.DeserializationFeature spring.jackson.deserialization.<feature_name>=true|false

com.fasterxml.jackson.core.JsonGenerator.Feature spring.jackson.generator.<feature_name>=true|false

com.fasterxml.jackson.databind.MapperFeature spring.jackson.mapper.<feature_name>=true|false

com.fasterxml.jackson.core.JsonParser.Feature spring.jackson.parser.<feature_name>=true|false

com.fasterxml.jackson.databind.SerializationFeature spring.jackson.serialization.<feature_name>=true|false

com.fasterxml.jackson.annotation.JsonInclude.Include spring.jackson.default-property-inclusion=always|non_null|non_absent|non_default|non_empty

For example, to enable pretty print, set spring.jackson.serialization.indent_output=true . Note that, thanks to the use of relaxed binding, the case of
indent_output doesn’t have to match the case of the corresponding enum constant which is INDENT_OUTPUT .

This environment-based configuration is applied to the auto-configured Jackson2ObjectMapperBuilder bean, and will apply to any mappers created using the
builder, including the auto-configured ObjectMapper bean.

The context’s Jackson2ObjectMapperBuilder can be customized by one or more Jackson2ObjectMapperBuilderCustomizer beans. Such customizer
beans can be ordered and Boot’s own customizer has an order of 0, allowing additional customization to be applied both before and after Boot’s customization.

Any beans of type com.fasterxml.jackson.databind.Module will be automatically registered with the auto-configured Jackson2ObjectMapperBuilder and
applied to any ObjectMapper instances that it creates. This provides a global mechanism for contributing custom modules when you add new features to your
application.

If you want to replace the default ObjectMapper completely, either define a @Bean of that type and mark it as @Primary , or, if you prefer the builder-based
approach, define a Jackson2ObjectMapperBuilder @Bean . Note that in either case this will disable all auto-configuration of the `ObjectMapper.

If you provide any @Beans of type MappingJackson2HttpMessageConverter then they will replace the default value in the MVC configuration. Also, a
convenience bean is provided of type HttpMessageConverters (always available if you use the default MVC configuration) which has some useful methods to access
the default and user-enhanced message converters.

See also the Section 72.4, “Customize the @ResponseBody rendering” section and the WebMvcAutoConfiguration source code for more details.

72.4 Customize the @ResponseBody rendering
Spring uses HttpMessageConverters to render @ResponseBody (or responses from @RestController). You can contribute additional converters by simply
adding beans of that type in a Spring Boot context. If a bean you add is of a type that would have been included by default anyway (like
MappingJackson2HttpMessageConverter for JSON conversions) then it will replace the default value. A convenience bean is provided of type
HttpMessageConverters (always available if you use the default MVC configuration) which has some useful methods to access the default and user-enhanced
message converters (useful, for example if you want to manually inject them into a custom RestTemplate).

As in normal MVC usage, any WebMvcConfigurerAdapter beans that you provide can also contribute converters by overriding the
configureMessageConverters method, but unlike with normal MVC, you can supply only additional converters that you need (because Spring Boot uses the same
mechanism to contribute its defaults). Finally, if you opt-out of the Spring Boot default MVC configuration by providing your own @EnableWebMvc configuration, then you
can take control completely and do everything manually using getMessageConverters from WebMvcConfigurationSupport .

See the WebMvcAutoConfiguration source code for more details.

72.5 Handling Multipart File Uploads
Spring Boot embraces the Servlet 3 javax.servlet.http.Part API to support uploading files. By default Spring Boot configures Spring MVC with a maximum file of
1MB per file and a maximum of 10MB of file data in a single request. You may override these values, as well as the location to which intermediate data is stored (e.g., to
the /tmp directory) and the threshold past which data is flushed to disk by using the properties exposed in the MultipartProperties class. If you want to specify
that files be unlimited, for example, set the spring.http.multipart.max-file-size property to -1 .

The multipart support is helpful when you want to receive multipart encoded file data as a @RequestParam -annotated parameter of type MultipartFile in a Spring
MVC controller handler method.

See the MultipartAutoConfiguration source for more details.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

124 of 180 05/12/2016 20:33

72.6 Switch off the Spring MVC DispatcherServlet
Spring Boot wants to serve all content from the root of your application / down. If you would rather map your own servlet to that URL you can do it, but of course you
may lose some of the other Boot MVC features. To add your own servlet and map it to the root resource just declare a @Bean of type Servlet and give it the special
bean name dispatcherServlet (You can also create a bean of a different type with that name if you want to switch it off and not replace it).

72.7 Switch off the Default MVC configuration
The easiest way to take complete control over MVC configuration is to provide your own @Configuration with the @EnableWebMvc annotation. This will leave all
MVC configuration in your hands.

72.8 Customize ViewResolvers
A ViewResolver is a core component of Spring MVC, translating view names in @Controller to actual View implementations. Note that ViewResolvers are
mainly used in UI applications, rather than REST-style services (a View is not used to render a @ResponseBody). There are many implementations of
ViewResolver to choose from, and Spring on its own is not opinionated about which ones you should use. Spring Boot, on the other hand, installs one or two for you
depending on what it finds on the classpath and in the application context. The DispatcherServlet uses all the resolvers it finds in the application context, trying
each one in turn until it gets a result, so if you are adding your own you have to be aware of the order and in which position your resolver is added.

WebMvcAutoConfiguration adds the following ViewResolvers to your context:

An InternalResourceViewResolver with bean id ‘defaultViewResolver’. This one locates physical resources that can be rendered using the
DefaultServlet (e.g. static resources and JSP pages if you are using those). It applies a prefix and a suffix to the view name and then looks for a physical
resource with that path in the servlet context (defaults are both empty, but accessible for external configuration via spring.mvc.view.prefix and
spring.mvc.view.suffix). It can be overridden by providing a bean of the same type.
A BeanNameViewResolver with id ‘beanNameViewResolver’. This is a useful member of the view resolver chain and will pick up any beans with the same name
as the View being resolved. It shouldn’t be necessary to override or replace it.
A ContentNegotiatingViewResolver with id ‘viewResolver’ is only added if there are actually beans of type View present. This is a ‘master’ resolver,
delegating to all the others and attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a useful blog about
ContentNegotiatingViewResolver that you might like to study to learn more, and also look at the source code for detail. You can switch off the
auto-configured ContentNegotiatingViewResolver by defining a bean named ‘viewResolver’.
If you use Thymeleaf you will also have a ThymeleafViewResolver with id ‘thymeleafViewResolver’. It looks for resources by surrounding the view name with a
prefix and suffix (externalized to spring.thymeleaf.prefix and spring.thymeleaf.suffix , defaults ‘classpath:/templates/’ and ‘.html’ respectively). It can
be overridden by providing a bean of the same name.
If you use FreeMarker you will also have a FreeMarkerViewResolver with id ‘freeMarkerViewResolver’. It looks for resources in a loader path (externalized to
spring.freemarker.templateLoaderPath , default ‘classpath:/templates/’) by surrounding the view name with a prefix and suffix (externalized to
spring.freemarker.prefix and spring.freemarker.suffix , with empty and ‘.ftl’ defaults respectively). It can be overridden by providing a bean of the
same name.
If you use Groovy templates (actually if groovy-templates is on your classpath) you will also have a GroovyMarkupViewResolver with id
‘groovyMarkupViewResolver’. It looks for resources in a loader path by surrounding the view name with a prefix and suffix (externalized to
spring.groovy.template.prefix and spring.groovy.template.suffix , defaults ‘classpath:/templates/’ and ‘.tpl’ respectively). It can be overridden by
providing a bean of the same name.

Check out WebMvcAutoConfiguration , ThymeleafAutoConfiguration , FreeMarkerAutoConfiguration and GroovyTemplateAutoConfiguration

72.9 Use Thymeleaf 3
By default, spring-boot-starter-thymeleaf uses Thymeleaf 2.1. If you are using the spring-boot-starter-parent , you can use Thymeleaf 3 by
overriding the thymeleaf.version and thymeleaf-layout-dialect.version properties, for example:

<properties>
<thymeleaf.version>3.0.2.RELEASE</thymeleaf.version>
<thymeleaf-layout-dialect.version>2.1.1</thymeleaf-layout-dialect.version>

</properties>

if you are managing dependencies yourself, look at spring-boot-dependencies for the list of artifacts that are related to those two versions.

To avoid a warning message about the HTML 5 template mode being deprecated and the HTML template mode being used instead, you may also want to explicitly
configure spring.thymeleaf.mode to be HTML , for example:

spring.thymeleaf.mode: HTML

Please refer to the Thymeleaf 3 sample to see this in action.

If you are using any of the other auto-configured Thymeleaf Extras (Spring Security, Data Attribute, or Java 8 Time) you should also override each of their versions to one
that is compatible with Thymeleaf 3.0.

73. HTTP clients

73.1 Configure RestTemplate to use a proxy
As described in Section 33.1, “RestTemplate customization” can be used with to build a customized

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

125 of 180 05/12/2016 20:33

RestTemplate . This is the recommended approach for creating a RestTemplate configured to use a proxy.

The exact details of the proxy configuration depend on the underlying client request factory that is being used. Here’s an example of configuring
HttpComponentsClientRequestFactory with an HttpClient that uses a proxy for all hosts except 192.168.0.5 .

static class ProxyCustomizer implements RestTemplateCustomizer {

@Override
public void customize(RestTemplate restTemplate) {

 HttpHost proxy = new HttpHost("proxy.example.com");
 HttpClient httpClient = HttpClientBuilder.create()
 .setRoutePlanner(new DefaultProxyRoutePlanner(proxy) {

@Override
public HttpHost determineProxy(HttpHost target,

 HttpRequest request, HttpContext context)
throws HttpException {

if (target.getHostName().equals("192.168.0.5")) {
return null;

 }
return super.determineProxy(target, request, context);

 }

 }).build();
 restTemplate.setRequestFactory(

new HttpComponentsClientHttpRequestFactory(httpClient));
 }

}

74. Logging
Spring Boot has no mandatory logging dependency, except for the Commons Logging API, of which there are many implementations to choose from. To use Logback you
need to include it and jcl-over-slf4j (which implements the Commons Logging API) on the classpath. The simplest way to do that is through the starters which all
depend on spring-boot-starter-logging . For a web application you only need spring-boot-starter-web since it depends transitively on the logging
starter. For example, using Maven:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>

Spring Boot has a LoggingSystem abstraction that attempts to configure logging based on the content of the classpath. If Logback is available it is the first choice.

If the only change you need to make to logging is to set the levels of various loggers then you can do that in application.properties using the "logging.level"
prefix, e.g.

logging.level.org.springframework.web=DEBUG
logging.level.org.hibernate=ERROR

You can also set the location of a file to log to (in addition to the console) using "logging.file".

To configure the more fine-grained settings of a logging system you need to use the native configuration format supported by the LoggingSystem in question. By
default Spring Boot picks up the native configuration from its default location for the system (e.g. classpath:logback.xml for Logback), but you can set the location
of the config file using the "logging.config" property.

74.1 Configure Logback for logging
If you put a logback.xml in the root of your classpath it will be picked up from there (or logback-spring.xml to take advantage of the templating features provided
by Boot). Spring Boot provides a default base configuration that you can include if you just want to set levels, e.g.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<include resource="org/springframework/boot/logging/logback/base.xml"/>
<logger name="org.springframework.web" level="DEBUG"/>

</configuration>

If you look at that base.xml in the spring-boot jar, you will see that it uses some useful System properties which the LoggingSystem takes care of creating for you.
These are:

${PID} the current process ID.
${LOG_FILE} if logging.file was set in Boot’s external configuration.
${LOG_PATH} if logging.path was set (representing a directory for log files to live in).
${LOG_EXCEPTION_CONVERSION_WORD} if logging.exception-conversion-word was set in Boot’s external configuration.

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in a log file) using a custom Logback converter. See the default base.xml
configuration for details.

If Groovy is on the classpath you should be able to configure Logback with logback.groovy as well (it will be given preference if present).

74.1.1 Configure logback for file only output

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

126 of 180 05/12/2016 20:33

If you want to disable console logging and write output only to a file you need a custom logback-spring.xml that imports file-appender.xml but not
console-appender.xml :

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<include resource="org/springframework/boot/logging/logback/defaults.xml" />
<property name="LOG_FILE" value="${LOG_FILE:-${LOG_PATH:-${LOG_TEMP:-${java.io.tmpdir:-/tmp}}/}spring.log}"/>
<include resource="org/springframework/boot/logging/logback/file-appender.xml" />
<root level="INFO">

<appender-ref ref="FILE" />
</root>

</configuration>

You also need to add logging.file to your application.properties :

logging.file=myapplication.log

74.2 Configure Log4j for logging
Spring Boot supports Log4j 2 for logging configuration if it is on the classpath. If you are using the starters for assembling dependencies that means you have to exclude
Logback and then include log4j 2 instead. If you aren’t using the starters then you need to provide jcl-over-slf4j (at least) in addition to Log4j 2.

The simplest path is probably through the starters, even though it requires some jiggling with excludes, .e.g. in Maven:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<exclusions>

<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j2</artifactId>

</dependency>

The use of the Log4j starters gathers together the dependencies for common logging requirements (e.g. including having Tomcat use
java.util.logging but configuring the output using Log4j 2). See the Actuator Log4j 2 samples for more detail and to see it in action.

74.2.1 Use YAML or JSON to configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON configuration files. To configure Log4j 2 to use an alternative configuration file
format, add the appropriate dependencies to the classpath and name your configuration files to match your chosen file format:

Format Dependencies File names

YAML com.fasterxml.jackson.core:jackson-databind

com.fasterxml.jackson.dataformat:jackson-dataformat-yaml

log4j2.yaml

log4j2.yml

JSON com.fasterxml.jackson.core:jackson-databind log4j2.json

log4j2.jsn

75. Data Access

75.1 Configure a DataSource
To override the default settings just define a @Bean of your own of type DataSource . As explained in Section 24.7.1, “Third-party configuration” you can easily bind it
to a set of Environment properties:

@Bean
@ConfigurationProperties(prefix="datasource.fancy")
public DataSource dataSource() {

return new FancyDataSource();
}

datasource.fancy.jdbcUrl=jdbc:h2:mem:mydb
datasource.fancy.username=sa
datasource.fancy.poolSize=30

Spring Boot also provides a utility builder class DataSourceBuilder that can be used to create one of the standard data sources (if it is on the classpath), or you can
just create your own. If you want to reuse the customizations of DataSourceProperties , you can easily initialize a DataSourceBuilder from it:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

127 of 180 05/12/2016 20:33

@Bean
@ConfigurationProperties(prefix="datasource.mine")
public DataSource dataSource(DataSourceProperties properties) {

return properties.initializeDataSourceBuilder()
// additional customizations

 .build();
}

spring.datasource.url=jdbc:h2:mem:mydb
spring.datasource.username=sa
datasource.mine.poolSize=30

In this scenario, you keep the standard properties exposed by Spring Boot with your custom DataSource arrangement. By adding @ConfigurationProperties ,
you can also expose additional implementation-specific settings in a dedicated namespace.

See Section 29.1, “Configure a DataSource” in the ‘Spring Boot features’ section and the DataSourceAutoConfiguration class for more details.

You could also do that if you want to configure a JNDI data-source.
@Bean(destroyMethod="")
@ConfigurationProperties(prefix="datasource.mine")
public DataSource dataSource() throws Exception {
 JndiDataSourceLookup dataSourceLookup = new JndiDataSourceLookup();

return dataSourceLookup.getDataSource("java:comp/env/jdbc/YourDS");
}

75.2 Configure Two DataSources
Creating more than one data source works the same as creating the first one. You might want to mark one of them as @Primary if you are using the default
auto-configuration for JDBC or JPA (then that one will be picked up by any @Autowired injections).

@Bean
@Primary
@ConfigurationProperties(prefix="datasource.primary")
public DataSource primaryDataSource() {

return DataSourceBuilder.create().build();
}

@Bean
@ConfigurationProperties(prefix="datasource.secondary")
public DataSource secondaryDataSource() {

return DataSourceBuilder.create().build();
}

75.3 Use Spring Data repositories
Spring Data can create implementations for you of @Repository interfaces of various flavors. Spring Boot will handle all of that for you as long as those
@Repositories are included in the same package (or a sub-package) of your @EnableAutoConfiguration class.

For many applications all you will need is to put the right Spring Data dependencies on your classpath (there is a spring-boot-starter-data-jpa for JPA and a
spring-boot-starter-data-mongodb for Mongodb), create some repository interfaces to handle your @Entity objects. Examples are in the JPA sample or the
Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the @EnableAutoConfiguration it finds. To get more control, use the
@EnableJpaRepositories annotation (from Spring Data JPA).

75.4 Separate @Entity definitions from Spring configuration
Spring Boot tries to guess the location of your @Entity definitions, based on the @EnableAutoConfiguration it finds. To get more control, you can use the
@EntityScan annotation, e.g.

@Configuration
@EnableAutoConfiguration
@EntityScan(basePackageClasses=City.class)
public class Application {

//...

}

75.5 Configure JPA properties
Spring Data JPA already provides some vendor-independent configuration options (e.g. for SQL logging) and Spring Boot exposes those, and a few more for hibernate as
external configuration properties. The most common options to set are:

spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.hibernate.naming.physical-strategy=com.example.MyPhysicalNamingStrategy
spring.jpa.database=H2
spring.jpa.show-sql=true

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

128 of 180 05/12/2016 20:33

The ddl-auto setting is a special case in that it has different defaults depending on whether you are using an embedded database (create-drop) or not (none). In
addition all properties in spring.jpa.properties.* are passed through as normal JPA properties (with the prefix stripped) when the local
EntityManagerFactory is created.

Spring Boot provides a consistent naming strategy regardless of the Hibernate generation that you are using. If you are using Hibernate 4, you can customize it using
spring.jpa.hibernate.naming.strategy ; Hibernate 5 defines a Physical and Implicit naming strategies: Spring Boot configures
SpringPhysicalNamingStrategy by default. This implementation provides the same table structure as Hibernate 4. If you’d rather use Hibernate 5’s default instead,
set the following property:

spring.jpa.hibernate.naming.physical-strategy=org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl

See HibernateJpaAutoConfiguration and JpaBaseConfiguration for more details.

75.6 Use a custom EntityManagerFactory
To take full control of the configuration of the EntityManagerFactory , you need to add a @Bean named ‘entityManagerFactory’. Spring Boot auto-configuration
switches off its entity manager based on the presence of a bean of that type.

75.7 Use Two EntityManagers
Even if the default EntityManagerFactory works fine, you will need to define a new one because otherwise the presence of the second bean of that type will switch
off the default. To make it easy to do that you can use the convenient EntityManagerBuilder provided by Spring Boot, or if you prefer you can just use the
LocalContainerEntityManagerFactoryBean directly from Spring ORM.

Example:

// add two data sources configured as above

@Bean
public LocalContainerEntityManagerFactoryBean customerEntityManagerFactory(
 EntityManagerFactoryBuilder builder) {

return builder
 .dataSource(customerDataSource())
 .packages(Customer.class)
 .persistenceUnit("customers")
 .build();
}

@Bean
public LocalContainerEntityManagerFactoryBean orderEntityManagerFactory(
 EntityManagerFactoryBuilder builder) {

return builder
 .dataSource(orderDataSource())
 .packages(Order.class)
 .persistenceUnit("orders")
 .build();
}

The configuration above almost works on its own. To complete the picture you need to configure TransactionManagers for the two EntityManagers as well. One
of them could be picked up by the default JpaTransactionManager in Spring Boot if you mark it as @Primary . The other would have to be explicitly injected into a
new instance. Or you might be able to use a JTA transaction manager spanning both.

If you are using Spring Data, you need to configure @EnableJpaRepositories accordingly:

@Configuration
@EnableJpaRepositories(basePackageClasses = Customer.class,
 entityManagerFactoryRef = "customerEntityManagerFactory")
public class CustomerConfiguration {
 ...
}

@Configuration
@EnableJpaRepositories(basePackageClasses = Order.class,
 entityManagerFactoryRef = "orderEntityManagerFactory")
public class OrderConfiguration {
 ...
}

75.8 Use a traditional persistence.xml
Spring doesn’t require the use of XML to configure the JPA provider, and Spring Boot assumes you want to take advantage of that feature. If you prefer to use
persistence.xml then you need to define your own @Bean of type LocalEntityManagerFactoryBean (with id ‘entityManagerFactory’, and set the persistence
unit name there.

See JpaBaseConfiguration for the default settings.

75.9 Use Spring Data JPA and Mongo repositories
Spring Data JPA and Spring Data Mongo can both create Repository implementations for you automatically. If they are both present on the classpath, you might have
to do some extra configuration to tell Spring Boot which one (or both) you want to create repositories for you. The most explicit way to do that is to use the standard Spring

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

129 of 180 05/12/2016 20:33

There are also flags spring.data.*.repositories.enabled that you can use to switch the auto-configured repositories on and off in external configuration. This
is useful for instance in case you want to switch off the Mongo repositories and still use the auto-configured MongoTemplate .

The same obstacle and the same features exist for other auto-configured Spring Data repository types (Elasticsearch, Solr). Just change the names of the annotations
and flags respectively.

75.10 Expose Spring Data repositories as REST endpoint
Spring Data REST can expose the Repository implementations as REST endpoints for you as long as Spring MVC has been enabled for the application.

Spring Boot exposes as set of useful properties from the spring.data.rest namespace that customize the RepositoryRestConfiguration . If you need to
provide additional customization, you should use a RepositoryRestConfigurer bean.

75.11 Configure a component that is used by JPA
If you want to configure a component that will be used by JPA then you need to ensure that the component is initialized before JPA. Where the component is
auto-configured Spring Boot will take care of this for you. For example, when Flyway is auto-configured, Hibernate is configured to depend upon Flyway so that the latter
has a chance to initialize the database before Hibernate tries to use it.

If you are configuring a component yourself, you can use an EntityManagerFactoryDependsOnPostProcessor subclass as a convenient way of setting up the
necessary dependencies. For example, if you are using Hibernate Search with Elasticsearch as its index manager then any EntityManagerFactory beans must be
configured to depend on the elasticsearchClient bean:

/**
 * {@link EntityManagerFactoryDependsOnPostProcessor} that ensures that
 * {@link EntityManagerFactory} beans depend on the {@code elasticsearchClient} bean.
 */
@Configuration
static class ElasticsearchJpaDependencyConfiguration

extends EntityManagerFactoryDependsOnPostProcessor {

 ElasticsearchJpaDependencyConfiguration() {
super("elasticsearchClient");

 }

}

76. Database initialization
An SQL database can be initialized in different ways depending on what your stack is. Or of course you can do it manually as long as the database is a separate process.

76.1 Initialize a database using JPA
JPA has features for DDL generation, and these can be set up to run on startup against the database. This is controlled through two external properties:

spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.
spring.jpa.hibernate.ddl-auto (enum) is a Hibernate feature that controls the behavior in a more fine-grained way. See below for more detail.

76.2 Initialize a database using Hibernate
You can set spring.jpa.hibernate.ddl-auto explicitly and the standard Hibernate property values are none , validate , update , create ,
create-drop . Spring Boot chooses a default value for you based on whether it thinks your database is embedded (default create-drop) or not (default none). An
embedded database is detected by looking at the Connection type: hsqldb , h2 and derby are embedded, the rest are not. Be careful when switching from
in-memory to a ‘real’ database that you don’t make assumptions about the existence of the tables and data in the new platform. You either have to set ddl-auto
explicitly, or use one of the other mechanisms to initialize the database.

You can output the schema creation by enabling the org.hibernate.SQL logger. This is done for you automatically if you enable the debug mode.

In addition, a file named import.sql in the root of the classpath will be executed on startup if Hibernate creates the schema from scratch (that is if the ddl-auto
property is set to create or create-drop). This can be useful for demos and for testing if you are careful, but probably not something you want to be on the
classpath in production. It is a Hibernate feature (nothing to do with Spring).

76.3 Initialize a database using Spring JDBC
Spring JDBC has a DataSource initializer feature. Spring Boot enables it by default and loads SQL from the standard locations schema.sql and data.sql (in the
root of the classpath). In addition Spring Boot will load the schema-${platform}.sql and data-${platform}.sql files (if present), where platform is the
value of spring.datasource.platform , e.g. you might choose to set it to the vendor name of the database (hsqldb , h2 , oracle , mysql , postgresql
etc.). Spring Boot enables the fail-fast feature of the Spring JDBC initializer by default, so if the scripts cause exceptions the application will fail to start. The script
locations can be changed by setting spring.datasource.schema and spring.datasource.data , and neither location will be processed if
spring.datasource.initialize=false .

To disable the fail-fast you can set spring.datasource.continue-on-error=true . This can be useful once an application has matured and been deployed a few
times, since the scripts can act as ‘poor man’s migrations’ — inserts that fail mean that the data is already there, so there would be no need to prevent the application from
running, for instance.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

130 of 180 05/12/2016 20:33

If you want to use the schema.sql initialization in a JPA app (with Hibernate) then ddl-auto=create-drop will lead to errors if Hibernate tries to create the same
tables. To avoid those errors set ddl-auto explicitly to "" (preferable) or "none". Whether or not you use ddl-auto=create-drop you can always use data.sql
to initialize new data.

76.4 Initialize a Spring Batch database
If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular database platforms. Spring Boot will detect your database type,
and execute those scripts by default, and in this case will switch the fail fast setting to false (errors are logged but do not prevent the application from starting). This is
because the scripts are known to be reliable and generally do not contain bugs, so errors are ignorable, and ignoring them makes the scripts idempotent. You can switch
off the initialization explicitly using spring.batch.initializer.enabled=false .

76.5 Use a higher-level database migration tool
Spring Boot supports two higher-level migration tools: Flyway and Liquibase.

76.5.1 Execute Flyway database migrations on startup

To automatically run Flyway database migrations on startup, add the org.flywaydb:flyway-core to your classpath.

The migrations are scripts in the form V<VERSION>__<NAME>.sql (with <VERSION> an underscore-separated version, e.g. ‘1’ or ‘2_1’). By default they live in a folder
classpath:db/migration but you can modify that using flyway.locations (a list). See the Flyway class from flyway-core for details of available settings like
schemas etc. In addition Spring Boot provides a small set of properties in FlywayProperties that can be used to disable the migrations, or switch off the location
checking. Spring Boot will call Flyway.migrate() to perform the database migration. If you would like more control, provide a @Bean that implements
FlywayMigrationStrategy .

If you want to make use of Flyway callbacks, those scripts should also live in the classpath:db/migration folder.

By default Flyway will autowire the (@Primary) DataSource in your context and use that for migrations. If you like to use a different DataSource you can create
one and mark its @Bean as @FlywayDataSource - if you do that remember to create another one and mark it as @Primary if you want two data sources. Or you
can use Flyway’s native DataSource by setting flyway.[url,user,password] in external properties.

There is a Flyway sample so you can see how to set things up.

76.5.2 Execute Liquibase database migrations on startup

To automatically run Liquibase database migrations on startup, add the org.liquibase:liquibase-core to your classpath.

The master change log is by default read from db/changelog/db.changelog-master.yaml but can be set using liquibase.change-log . In addition to YAML,
Liquibase also supports JSON, XML, and SQL change log formats.

See LiquibaseProperties for details of available settings like contexts, default schema etc.

There is a Liquibase sample so you can see how to set things up.

77. Messaging

77.1 Disable transacted JMS session
If your JMS broker does not support transacted session, you will have to disable the support of transactions altogether. If you create your own
JmsListenerContainerFactory there is nothing to do since it won’t be transacted by default. If you want to use the
DefaultJmsListenerContainerFactoryConfigurer to reuse Spring Boot’s default, you can disable transacted session as follows:

@Bean
public DefaultJmsListenerContainerFactory jmsListenerContainerFactory(
 ConnectionFactory connectionFactory,
 DefaultJmsListenerContainerFactoryConfigurer configurer) {
 DefaultJmsListenerContainerFactory listenerFactory =

new DefaultJmsListenerContainerFactory();
 configurer.configure(listenerFactory, connectionFactory);
 listenerFactory.setTransactionManager(null);
 listenerFactory.setSessionTransacted(false);

return listenerFactory;
}

This overrides the default factory and this should be applied to any other factory that your application defines, if any.

78. Batch applications

78.1 Execute Spring Batch jobs on startup
Spring Batch auto-configuration is enabled by adding @EnableBatchProcessing (from Spring Batch) somewhere in your context.

By default it executes all Jobs in the application context on startup (see JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

131 of 180 05/12/2016 20:33

specifying spring.batch.job.names (comma-separated job name patterns).

If the application context includes a JobRegistry then the jobs in spring.batch.job.names are looked up in the registry instead of being autowired from the
context. This is a common pattern with more complex systems where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

79. Actuator

79.1 Change the HTTP port or address of the actuator endpoints
In a standalone application the Actuator HTTP port defaults to the same as the main HTTP port. To make the application listen on a different port set the external property
management.port . To listen on a completely different network address (e.g. if you have an internal network for management and an external one for user applications)
you can also set management.address to a valid IP address that the server is able to bind to.

For more detail look at the ManagementServerProperties source code and Section 48.3, “Customizing the management server port” in the ‘Production-ready
features’ section.

79.2 Customize the ‘whitelabel’ error page
Spring Boot installs a ‘whitelabel’ error page that you will see in browser client if you encounter a server error (machine clients consuming JSON and other media types
should see a sensible response with the right error code).

Set server.error.whitelabel.enabled=false to switch the default error page off which will restore the default of the servlet container that you are
using. Note that Spring Boot will still attempt to resolve the error view so you’d probably add you own error page rather than disabling it completely.

Overriding the error page with your own depends on the templating technology that you are using. For example, if you are using Thymeleaf you would add an
error.html template and if you are using FreeMarker you would add an error.ftl template. In general what you need is a View that resolves with a name of
error , and/or a @Controller that handles the /error path. Unless you replaced some of the default configuration you should find a BeanNameViewResolver
in your ApplicationContext so a @Bean with id error would be a simple way of doing that. Look at ErrorMvcAutoConfiguration for more options.

See also the section on Error Handling for details of how to register handlers in the servlet container.

79.3 Actuator and Jersey
Actuator HTTP endpoints are only available for Spring MVC-based applications. If you want to use Jersey and still use the actuator you will need to enable Spring MVC
(by depending on spring-boot-starter-web , for example). By default, both Jersey and the Spring MVC dispatcher servlet are mapped to the same path (/). You
will need to change the path for one of them (by configuring server.servlet-path for Spring MVC or spring.jersey.application-path for Jersey). For
example, if you add server.servlet-path=/system into application.properties , the actuator HTTP endpoints will be available under /system .

80. Security

80.1 Switch off the Spring Boot security configuration
If you define a @Configuration with @EnableWebSecurity anywhere in your application it will switch off the default webapp security settings in Spring Boot (but
leave the Actuator’s security enabled). To tweak the defaults try setting properties in security.* (see SecurityProperties for details of available settings) and
SECURITY section of Common application properties.

80.2 Change the AuthenticationManager and add user accounts
If you provide a @Bean of type AuthenticationManager the default one will not be created, so you have the full feature set of Spring Security available (e.g. various
authentication options).

Spring Security also provides a convenient AuthenticationManagerBuilder which can be used to build an AuthenticationManager with common options.
The recommended way to use this in a webapp is to inject it into a void method in a WebSecurityConfigurerAdapter , e.g.

@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth.inMemoryAuthentication()
 .withUser("barry").password("password").roles("USER"); // ... etc.
 }

// ... other stuff for application security

}

You will get the best results if you put this in a nested class, or a standalone class (i.e. not mixed in with a lot of other @Beans that might be allowed to influence the
order of instantiation). The secure web sample is a useful template to follow.

If you experience instantiation issues (e.g. using JDBC or JPA for the user detail store) it might be worth extracting the AuthenticationManagerBuilder callback

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

132 of 180 05/12/2016 20:33

into a GlobalAuthenticationConfigurerAdapter (in the init() method so it happens before the authentication manager is needed elsewhere), e.g.

@Configuration
public class AuthenticationManagerConfiguration extends
 GlobalAuthenticationConfigurerAdapter {

@Override
public void init(AuthenticationManagerBuilder auth) {

 auth.inMemoryAuthentication() // ... etc.
 }

}

80.3 Enable HTTPS when running behind a proxy server
Ensuring that all your main endpoints are only available over HTTPS is an important chore for any application. If you are using Tomcat as a servlet container, then Spring
Boot will add Tomcat’s own RemoteIpValve automatically if it detects some environment settings, and you should be able to rely on the HttpServletRequest to
report whether it is secure or not (even downstream of a proxy server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x-forwarded-for and x-forwarded-proto), whose names are conventional, so it should work with most front end proxies.
You can switch on the valve by adding some entries to application.properties , e.g.

server.tomcat.remote_ip_header=x-forwarded-for
server.tomcat.protocol_header=x-forwarded-proto

(The presence of either of those properties will switch on the valve. Or you can add the RemoteIpValve yourself by adding a
TomcatEmbeddedServletContainerFactory bean.)

Spring Security can also be configured to require a secure channel for all (or some requests). To switch that on in a Spring Boot application you just need to set
security.require_ssl to true in application.properties .

81. Hot swapping

81.1 Reload static content
There are several options for hot reloading. The recommended approach is to use spring-boot-devtools as it provides additional development-time features such
as support for fast application restarts and LiveReload as well as sensible development-time configuration (e.g. template caching).

Alternatively, running in an IDE (especially with debugging on) is a good way to do development (all modern IDEs allow reloading of static resources and usually also
hot-swapping of Java class changes).

Finally, the Maven and Gradle plugins can be configured (see the addResources property) to support running from the command line with reloading of static files. You
can use that with an external css/js compiler process if you are writing that code with higher level tools.

81.2 Reload templates without restarting the container
Most of the templating technologies supported by Spring Boot include a configuration option to disable caching (see below for details). If you’re using the
spring-boot-devtools module these properties will be automatically configured for you at development time.

81.2.1 Thymeleaf templates

If you are using Thymeleaf, then set spring.thymeleaf.cache to false . See ThymeleafAutoConfiguration for other Thymeleaf customization options.

81.2.2 FreeMarker templates

If you are using FreeMarker, then set spring.freemarker.cache to false . See FreeMarkerAutoConfiguration for other FreeMarker customization options.

81.2.3 Groovy templates

If you are using Groovy templates, then set spring.groovy.template.cache to false . See GroovyTemplateAutoConfiguration for other Groovy
customization options.

81.3 Fast application restarts
The spring-boot-devtools module includes support for automatic application restarts. Whilst not as fast a technologies such as JRebel or Spring Loaded it’s
usually significantly faster than a “cold start”. You should probably give it a try before investigating some of the more complex reload options discussed below.

For more details see the Chapter 20, Developer tools section.

81.4 Reload Java classes without restarting the container
Modern IDEs (Eclipse, IDEA, etc.) all support hot swapping of bytecode, so if you make a change that doesn’t affect class or method signatures it should reload cleanly
with no side effects.

Spring Loaded goes a little further in that it can reload class definitions with changes in the method signatures. With some customization it can force an
 to refresh itself (but there is no general mechanism to ensure that would be safe for a running application anyway, so it would only ever be a

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

133 of 180 05/12/2016 20:33

development time trick probably).

81.4.1 Configuring Spring Loaded for use with Maven

To use Spring Loaded with the Maven command line, just add it as a dependency in the Spring Boot plugin declaration, e.g.

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<dependencies>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>springloaded</artifactId>
<version>1.2.0.RELEASE</version>

</dependency>
</dependencies>

</plugin>

This normally works pretty well with Eclipse and IntelliJ IDEA as long as they have their build configuration aligned with the Maven defaults (Eclipse m2e does this out of
the box).

81.4.2 Configuring Spring Loaded for use with Gradle and IntelliJ IDEA

You need to jump through a few hoops if you want to use Spring Loaded in combination with Gradle and IntelliJ IDEA. By default, IntelliJ IDEA will compile classes into a
different location than Gradle, causing Spring Loaded monitoring to fail.

To configure IntelliJ IDEA correctly you can use the idea Gradle plugin:

buildscript {
 repositories { jcenter() }
 dependencies {
 classpath "org.springframework.boot:spring-boot-gradle-plugin:2.0.0.BUILD-SNAPSHOT"
 classpath 'org.springframework:springloaded:1.2.0.RELEASE'
 }
}

apply plugin: 'idea'

idea {
 module {
 inheritOutputDirs = false
 outputDir = file("$buildDir/classes/main/")
 }
}

// ...

IntelliJ IDEA must be configured to use the same Java version as the command line Gradle task and springloaded must be included as a
buildscript dependency.

You can also additionally enable ‘Make Project Automatically’ inside IntelliJ IDEA to automatically compile your code whenever a file is saved.

82. Build

82.1 Generate build information
Both the Maven and Gradle plugin allow to generate build information containing the coordinates, name and version of the project. The plugin can also be configured to
add additional properties through configuration. When such file is present, Spring Boot auto-configures a BuildProperties bean.

To generate build information with Maven, add an execution for the build-info goal:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<executions>

<execution>
<goals>

<goal>build-info</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

Check the Spring Boot Maven Plugin documentation for more details.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

134 of 180 05/12/2016 20:33

springBoot {
 buildInfo()
}

Additional properties can be added using the DSL:

springBoot {
 buildInfo {
 additionalProperties = [

'foo': 'bar'
]
 }
}

82.2 Generate git information
Both Maven and Gradle allow to generate a git.properties file containing information about the state of your git source code repository when the project was
built.

For Maven users the spring-boot-starter-parent POM includes a pre-configured plugin to generate a git.properties file. Simply add the following
declaration to your POM:

<build>
<plugins>

<plugin>
<groupId>pl.project13.maven</groupId>
<artifactId>git-commit-id-plugin</artifactId>

</plugin>
</plugins>

</build>

Gradle users can achieve the same result using the gradle-git-properties plugin

plugins {
 id "com.gorylenko.gradle-git-properties" version "1.4.6"
}

82.3 Customize dependency versions
If you use a Maven build that inherits directly or indirectly from spring-boot-dependencies (for instance spring-boot-starter-parent) but you want to
override a specific third-party dependency you can add appropriate <properties> elements. Browse the spring-boot-dependencies POM for a complete list of
properties. For example, to pick a different slf4j version you would add the following:

<properties>
<slf4j.version>1.7.5<slf4j.version>

</properties>

This only works if your Maven project inherits (directly or indirectly) from spring-boot-dependencies . If you have added
spring-boot-dependencies in your own dependencyManagement section with <scope>import</scope> you have to redefine the artifact
yourself instead of overriding the property.

Each Spring Boot release is designed and tested against a specific set of third-party dependencies. Overriding versions may cause compatibility issues.

To override dependency versions in Gradle, you can specify a version as shown below:

ext['slf4j.version'] = '1.7.5'

For additional information, please refer to the Gradle Dependency Management Plugin documentation.

82.4 Create an executable JAR with Maven
The spring-boot-maven-plugin can be used to create an executable ‘fat’ JAR. If you are using the spring-boot-starter-parent POM you can simply
declare the plugin and your jars will be repackaged:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

If you are not using the parent POM you can still use the plugin, however, you must additionally add an <executions> section:

<build>
<plugins>

<plugin>

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

135 of 180 05/12/2016 20:33

<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.0.0.BUILD-SNAPSHOT</version>
<executions>

<execution>
<goals>

<goal>repackage</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

See the plugin documentation for full usage details.

82.5 Use a Spring Boot application as a dependency
Like a war file, a Spring Boot application is not intended to be used as a dependency. If your application contains classes that you want to share with other projects, the
recommended approach is to move that code into a separate module. The separate module can then be depended upon by your application and other projects.

If you cannot rearrange your code as recommended above, Spring Boot’s Maven and Gradle plugins must be configured to produce a separate artifact that is suitable for
use as a dependency. The executable archive cannot be used as a dependency as the executable jar format packages application classes in BOOT-INF/classes . This
means that they cannot be found when the executable jar is used as a dependency.

To produce the two artifacts, one that can be used as a dependency and one that is executable, a classifier must be specified. This classifier is applied to the name of the
executable archive, leaving the default archive for use as dependency.

To configure a classifier of exec in Maven, the following configuration can be used:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

<classifier>exec</classifier>
</configuration>

</plugin>
</plugins>

</build>

And when using Gradle, the following configuration can be used:

bootRepackage {
 classifier = 'exec'
}

82.6 Extract specific libraries when an executable jar runs
Most nested libraries in an executable jar do not need to be unpacked in order to run, however, certain libraries can have problems. For example, JRuby includes its own
nested jar support which assumes that the jruby-complete.jar is always directly available as a file in its own right.

To deal with any problematic libraries, you can flag that specific nested jars should be automatically unpacked to the ‘temp folder’ when the executable jar first runs.

For example, to indicate that JRuby should be flagged for unpack using the Maven Plugin you would add the following configuration:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

<requiresUnpack>
<dependency>

<groupId>org.jruby</groupId>
<artifactId>jruby-complete</artifactId>

</dependency>
</requiresUnpack>

</configuration>
</plugin>

</plugins>
</build>

And to do that same with Gradle:

springBoot {
 requiresUnpack = ['org.jruby:jruby-complete']
}

82.7 Create a non-executable JAR with exclusions
Often if you have an executable and a non-executable jar as build products, the executable version will have additional configuration files that are not needed in a library
jar. E.g. the application.yml configuration file might excluded from the non-executable JAR.

The maven-jar-plugin used to expose a forceCreation attribute that allows you to create the jar again once the repackage goal has ran. Arguably, this was a

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

136 of 180 05/12/2016 20:33

bit fragile anyway since it was relying on the order of plugin executions. In Maven, the executable jar must be the main artifact and you can add a classified jar for the
library:

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
<plugin>

<artifactId>maven-jar-plugin</artifactId>
<executions>

<execution>
<id>lib</id>
<phase>package</phase>
<goals>

<goal>jar</goal>
</goals>
<configuration>

<classifier>lib</classifier>
<excludes>

<exclude>application.yml</exclude>
</excludes>

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

In Gradle you can create a new JAR archive with standard task DSL features, and then have the bootRepackage task depend on that one using its withJarTask
property:

jar {
 baseName = 'spring-boot-sample-profile'
 version = '0.0.0'
 excludes = ['**/application.yml']
}

task('execJar', type:Jar, dependsOn: 'jar') {
 baseName = 'spring-boot-sample-profile'
 version = '0.0.0'
 classifier = 'exec'
 from sourceSets.main.output
}

bootRepackage {
 withJarTask = tasks['execJar']
}

82.8 Remote debug a Spring Boot application started with Maven
To attach a remote debugger to a Spring Boot application started with Maven you can use the jvmArguments property of the maven plugin.

Check this example for more details.

82.9 Remote debug a Spring Boot application started with Gradle
To attach a remote debugger to a Spring Boot application started with Gradle you can use the jvmArgs property of bootRun task or --debug-jvm command line
option.

build.gradle :

bootRun {
 jvmArgs "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005"
}

Command line:

$ gradle bootRun --debug-jvm

Check Gradle Application Plugin for more details.

82.10 Build an executable archive from Ant without using spring-boot-antlib
To build with Ant you need to grab dependencies, compile and then create a jar or war archive. To make it executable you can either use the spring-boot-antlib
module, or you can follow these instructions:

If you are building a jar, package the application’s classes and resources in a nested BOOT-INF/classes directory. If you are building a war, package the
application’s classes in a nested WEB-INF/classes directory as usual.

1.

Add the runtime dependencies in a nested BOOT-INF/lib directory for a jar or WEB-INF/lib for a war. Remember not to compress the entries in the archive.2.
Add the provided (embedded container) dependencies in a nested BOOT-INF/lib directory for jar or WEB-INF/lib-provided for a war. Remember not to
compress the entries in the archive.

3.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

137 of 180 05/12/2016 20:33

Use the appropriate launcher, e.g. JarLauncher for a jar file, as a Main-Class attribute in the manifest and specify the other properties it needs as manifest
entries, principally a Start-Class .

5.

Example:

<target name="build" depends="compile">
<jar destfile="target/${ant.project.name}-${spring-boot.version}.jar" compress="false">

<mappedresources>
<fileset dir="target/classes" />
<globmapper from="*" to="BOOT-INF/classes/*"/>

</mappedresources>
<mappedresources>

<fileset dir="src/main/resources" erroronmissingdir="false"/>
<globmapper from="*" to="BOOT-INF/classes/*"/>

</mappedresources>
<mappedresources>

<fileset dir="${lib.dir}/runtime" />
<globmapper from="*" to="BOOT-INF/lib/*"/>

</mappedresources>
<zipfileset src="${lib.dir}/loader/spring-boot-loader-jar-${spring-boot.version}.jar" />
<manifest>

<attribute name="Main-Class" value="org.springframework.boot.loader.JarLauncher" />
<attribute name="Start-Class" value="${start-class}" />

</manifest>
</jar>

</target>

The Ant Sample has a build.xml with a manual task that should work if you run it with

$ ant -lib <folder containing ivy-2.2.jar> clean manual

after which you can run the application with

$ java -jar target/*.jar

82.11 How to use Java 6
If you want to use Spring Boot with Java 6 there are a small number of configuration changes that you will have to make. The exact changes depend on your application’s
functionality.

82.11.1 Embedded servlet container compatibility

If you are using one of Boot’s embedded Servlet containers you will have to use a Java 6-compatible container. Both Tomcat 7 and Jetty 8 are Java 6 compatible. See
Section 71.16, “Use Tomcat 7.x or 8.0” and Section 71.18, “Use Jetty 8” for details.

82.11.2 Jackson

Jackson 2.7 and later requires Java 7. If you want to use Jackson with Java 6 you will have to downgrade to Jackson 2.6.

82.11.3 JTA API compatibility

While the Java Transaction API itself doesn’t require Java 7 the official API jar contains classes that have been built to require Java 7. If you are using JTA then you will
need to replace the official JTA 1.2 API jar with one that has been built to work on Java 6. To do so, exclude any transitive dependencies on
javax.transaction:javax.transaction-api and replace them with a dependency on
org.jboss.spec.javax.transaction:jboss-transaction-api_1.2_spec:1.0.0.Final

83. Traditional deployment

83.1 Create a deployable war file
The first step in producing a deployable war file is to provide a SpringBootServletInitializer subclass and override its configure method. This makes use of
Spring Framework’s Servlet 3.0 support and allows you to configure your application when it’s launched by the servlet container. Typically, you update your application’s
main class to extend SpringBootServletInitializer :

@SpringBootApplication
public class Application extends SpringBootServletInitializer {

@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

return application.sources(Application.class);
 }

public static void main(String[] args) throws Exception {
 SpringApplication.run(Application.class, args);
 }

}

The next step is to update your build configuration so that your project produces a war file rather than a jar file. If you’re using Maven and using
spring-boot-starter-parent (which configures Maven’s war plugin for you) all you need to do is modify pom.xml to change the packaging to war:

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

138 of 180 05/12/2016 20:33

<packaging>war</packaging>

If you’re using Gradle, you need to modify build.gradle to apply the war plugin to the project:

apply plugin: 'war'

The final step in the process is to ensure that the embedded servlet container doesn’t interfere with the servlet container to which the war file will be deployed. To do so,
you need to mark the embedded servlet container dependency as provided.

If you’re using Maven:

<dependencies>
<!-- … -->
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>

</dependency>
<!-- … -->

</dependencies>

And if you’re using Gradle:

dependencies {
// …

 providedRuntime 'org.springframework.boot:spring-boot-starter-tomcat'
// …

}

If you are using a version of Gradle that supports compile only dependencies (2.12 or later), you should continue to use providedRuntime . Among other
limitations, compileOnly dependencies are not on the test classpath so any web-based integration tests will fail.

If you’re using the Spring Boot build tools, marking the embedded servlet container dependency as provided will produce an executable war file with the provided
dependencies packaged in a lib-provided directory. This means that, in addition to being deployable to a servlet container, you can also run your application using
java -jar on the command line.

Take a look at Spring Boot’s sample applications for a Maven-based example of the above-described configuration.

83.2 Create a deployable war file for older servlet containers
Older Servlet containers don’t have support for the ServletContextInitializer bootstrap process used in Servlet 3.0. You can still use Spring and Spring Boot in
these containers but you are going to need to add a web.xml to your application and configure it to load an ApplicationContext via a DispatcherServlet .

83.3 Convert an existing application to Spring Boot
For a non-web application it should be easy (throw away the code that creates your ApplicationContext and replace it with calls to SpringApplication or
SpringApplicationBuilder). Spring MVC web applications are generally amenable to first creating a deployable war application, and then migrating it later to an
executable war and/or jar. Useful reading is in the Getting Started Guide on Converting a jar to a war.

Create a deployable war by extending SpringBootServletInitializer (e.g. in a class called Application), and add the Spring Boot
@SpringBootApplication annotation. Example:

@SpringBootApplication
public class Application extends SpringBootServletInitializer {

@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

// Customize the application or call application.sources(...) to add sources
// Since our example is itself a @Configuration class (via @SpringBootApplication)
// we actually don't need to override this method.
return application;

 }

}

Remember that whatever you put in the sources is just a Spring ApplicationContext and normally anything that already works should work here. There might be
some beans you can remove later and let Spring Boot provide its own defaults for them, but it should be possible to get something working first.

Static resources can be moved to /public (or /static or /resources or /META-INF/resources) in the classpath root. Same for messages.properties
(Spring Boot detects this automatically in the root of the classpath).

Vanilla usage of Spring DispatcherServlet and Spring Security should require no further changes. If you have other features in your application, using other servlets
or filters for instance, then you may need to add some configuration to your Application context, replacing those elements from the web.xml as follows:

A @Bean of type Servlet or ServletRegistrationBean installs that bean in the container as if it was a <servlet/> and <servlet-mapping/> in
web.xml .
A @Bean of type Filter or FilterRegistrationBean behaves similarly (like a <filter/> and <filter-mapping/> .
An ApplicationContext in an XML file can be added to an @Import in your Application . Or simple cases where annotation configuration is heavily used

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

139 of 180 05/12/2016 20:33

Once the war is working we make it executable by adding a main method to our Application , e.g.

public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
}

If you intend to start your application as a war or as an executable application, you need to share the customizations of the builder in a method that is both
available to the SpringBootServletInitializer callback and the main method, something like:

@SpringBootApplication
public class Application extends SpringBootServletInitializer {

@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder builder) {

return configureApplication(builder);
 }

public static void main(String[] args) {
 configureApplication(new SpringApplicationBuilder()).run(args);
 }

private static SpringApplicationBuilder configureApplication(SpringApplicationBuilder builder) {
return builder.sources(Application.class).bannerMode(Banner.Mode.OFF);

 }

}

Applications can fall into more than one category:

Servlet 3.0+ applications with no web.xml .
Applications with a web.xml .
Applications with a context hierarchy.
Applications without a context hierarchy.

All of these should be amenable to translation, but each might require slightly different tricks.

Servlet 3.0+ applications might translate pretty easily if they already use the Spring Servlet 3.0+ initializer support classes. Normally all the code from an existing
WebApplicationInitializer can be moved into a SpringBootServletInitializer . If your existing application has more than one ApplicationContext
(e.g. if it uses AbstractDispatcherServletInitializer) then you might be able to squash all your context sources into a single SpringApplication . The
main complication you might encounter is if that doesn’t work and you need to maintain the context hierarchy. See the entry on building a hierarchy for examples. An
existing parent context that contains web-specific features will usually need to be broken up so that all the ServletContextAware components are in the child context.

Applications that are not already Spring applications might be convertible to a Spring Boot application, and the guidance above might help, but your mileage may vary.

83.4 Deploying a WAR to WebLogic
To deploy a Spring Boot application to WebLogic you must ensure that your servlet initializer directly implements WebApplicationInitializer (even if you extend
from a base class that already implements it).

A typical initializer for WebLogic would be something like this:

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.context.web.SpringBootServletInitializer;
import org.springframework.web.WebApplicationInitializer;

@SpringBootApplication
public class MyApplication extends SpringBootServletInitializer implements WebApplicationInitializer {

}

If you use logback, you will also need to tell WebLogic to prefer the packaged version rather than the version that pre-installed with the server. You can do this by adding a
WEB-INF/weblogic.xml file with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app

xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
 http://xmlns.oracle.com/weblogic/weblogic-web-app
 http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">

<wls:container-descriptor>
<wls:prefer-application-packages>

<wls:package-name>org.slf4j</wls:package-name>
</wls:prefer-application-packages>

</wls:container-descriptor>
</wls:weblogic-web-app>

83.5 Deploying a WAR in an Old (Servlet 2.5) Container
Spring Boot uses Servlet 3.0 APIs to initialize the ServletContext (register Servlets etc.) so you can’t use the same application out of the box in a Servlet 2.5
container. It is however possible to run a Spring Boot application on an older container with some special tools. If you include
org.springframework.boot:spring-boot-legacy as a dependency (maintained separately to the core of Spring Boot and currently available at

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

140 of 180 05/12/2016 20:33

1.0.2.RELEASE), all you should need to do is create a web.xml and declare a context listener to create the application context and your filters and servlets. The context
listener is a special purpose one for Spring Boot, but the rest of it is normal for a Spring application in Servlet 2.5. Example:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>demo.Application</param-value>

</context-param>

<listener>
<listener-class>org.springframework.boot.legacy.context.web.SpringBootContextLoaderListener</listener-class>

</listener>

<filter>
<filter-name>metricsFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>metricsFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<servlet>
<servlet-name>appServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextAttribute</param-name>
<param-value>org.springframework.web.context.WebApplicationContext.ROOT</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>appServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

In this example we are using a single application context (the one created by the context listener) and attaching it to the DispatcherServlet using an init parameter.
This is normal in a Spring Boot application (you normally only have one application context).

Part X. Appendices

Appendix A. Common application properties
Various properties can be specified inside your application.properties / application.yml file or as command line switches. This section provides a list
common Spring Boot properties and references to the underlying classes that consume them.

Property contributions can come from additional jar files on your classpath so you should not consider this an exhaustive list. It is also perfectly legit to
define your own properties.

This sample file is meant as a guide only. Do not copy/paste the entire content into your application; rather pick only the properties that you need.

===
COMMON SPRING BOOT PROPERTIES
#
This sample file is provided as a guideline. Do NOT copy it in its
entirety to your own application. ^^^
===

--
CORE PROPERTIES
--

BANNER
banner.charset=UTF-8 # Banner file encoding.
banner.location=classpath:banner.txt # Banner file location.
banner.image.location=classpath:banner.gif # Banner image file location (jpg/png can also be used).
banner.image.width= # Width of the banner image in chars (default 76)
banner.image.height= # Height of the banner image in chars (default based on image height)
banner.image.margin= # Left hand image margin in chars (default 2)
banner.image.invert= # If images should be inverted for dark terminal themes (default false)

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

141 of 180 05/12/2016 20:33

logging.config= # Location of the logging configuration file. For instance `classpath:logback.xml` for Logback
logging.exception-conversion-word=%wEx # Conversion word used when logging exceptions.
logging.file= # Log file name. For instance `myapp.log`
logging.level.*= # Log levels severity mapping. For instance `logging.level.org.springframework=DEBUG`
logging.path= # Location of the log file. For instance `/var/log`
logging.pattern.console= # Appender pattern for output to the console. Only supported with the default logback setup.
logging.pattern.file= # Appender pattern for output to the file. Only supported with the default logback setup.
logging.pattern.level= # Appender pattern for log level (default %5p). Only supported with the default logback setup.
logging.register-shutdown-hook=false # Register a shutdown hook for the logging system when it is initialized.

AOP
spring.aop.auto=true # Add @EnableAspectJAutoProxy.
spring.aop.proxy-target-class=false # Whether subclass-based (CGLIB) proxies are to be created (true) as opposed to standard Java interface-based proxies

IDENTITY (ContextIdApplicationContextInitializer)
spring.application.index= # Application index.
spring.application.name= # Application name.

ADMIN (SpringApplicationAdminJmxAutoConfiguration)
spring.application.admin.enabled=false # Enable admin features for the application.
spring.application.admin.jmx-name=org.springframework.boot:type=Admin,name=SpringApplication # JMX name of the application admin MBean.

AUTO-CONFIGURATION
spring.autoconfigure.exclude= # Auto-configuration classes to exclude.

SPRING CORE
spring.beaninfo.ignore=true # Skip search of BeanInfo classes.

SPRING CACHE (CacheProperties)
spring.cache.cache-names= # Comma-separated list of cache names to create if supported by the underlying cache manager.
spring.cache.caffeine.spec= # The spec to use to create caches. Check CaffeineSpec for more details on the spec format.
spring.cache.couchbase.expiration=0 # Entry expiration in milliseconds. By default the entries never expire.
spring.cache.ehcache.config= # The location of the configuration file to use to initialize EhCache.
spring.cache.hazelcast.config= # The location of the configuration file to use to initialize Hazelcast.
spring.cache.infinispan.config= # The location of the configuration file to use to initialize Infinispan.
spring.cache.jcache.config= # The location of the configuration file to use to initialize the cache manager.
spring.cache.jcache.provider= # Fully qualified name of the CachingProvider implementation to use to retrieve the JSR-107 compliant cache manager. Only n
spring.cache.type= # Cache type, auto-detected according to the environment by default.

SPRING CONFIG - using environment property only (ConfigFileApplicationListener)
spring.config.location= # Config file locations.
spring.config.name=application # Config file name.

HAZELCAST (HazelcastProperties)
spring.hazelcast.config= # The location of the configuration file to use to initialize Hazelcast.

PROJECT INFORMATION (ProjectInfoProperties)
spring.info.build.location=classpath:META-INF/build-info.properties # Location of the generated build-info.properties file.
spring.info.git.location=classpath:git.properties # Location of the generated git.properties file.

JMX
spring.jmx.default-domain= # JMX domain name.
spring.jmx.enabled=true # Expose management beans to the JMX domain.
spring.jmx.server=mbeanServer # MBeanServer bean name.

Email (MailProperties)
spring.mail.default-encoding=UTF-8 # Default MimeMessage encoding.
spring.mail.host= # SMTP server host. For instance `smtp.example.com`
spring.mail.jndi-name= # Session JNDI name. When set, takes precedence to others mail settings.
spring.mail.password= # Login password of the SMTP server.
spring.mail.port= # SMTP server port.
spring.mail.properties.*= # Additional JavaMail session properties.
spring.mail.protocol=smtp # Protocol used by the SMTP server.
spring.mail.test-connection=false # Test that the mail server is available on startup.
spring.mail.username= # Login user of the SMTP server.

APPLICATION SETTINGS (SpringApplication)
spring.main.banner-mode=console # Mode used to display the banner when the application runs.
spring.main.sources= # Sources (class name, package name or XML resource location) to include in the ApplicationContext.
spring.main.web-environment= # Run the application in a web environment (auto-detected by default).

FILE ENCODING (FileEncodingApplicationListener)
spring.mandatory-file-encoding= # Expected character encoding the application must use.

INTERNATIONALIZATION (MessageSourceAutoConfiguration)
spring.messages.always-use-message-format=false # Set whether to always apply the MessageFormat rules, parsing even messages without arguments.
spring.messages.basename=messages # Comma-separated list of basenames, each following the ResourceBundle convention.
spring.messages.cache-seconds=-1 # Loaded resource bundle files cache expiration, in seconds. When set to -1, bundles are cached forever.
spring.messages.encoding=UTF-8 # Message bundles encoding.
spring.messages.fallback-to-system-locale=true # Set whether to fall back to the system Locale if no files for a specific Locale have been found.

OUTPUT
spring.output.ansi.enabled=detect # Configure the ANSI output.

PID FILE (ApplicationPidFileWriter)
spring.pid.fail-on-write-error= # Fail if ApplicationPidFileWriter is used but it cannot write the PID file.
spring.pid.file= # Location of the PID file to write (if ApplicationPidFileWriter is used).

PROFILES
spring.profiles.active= # Comma-separated list (or list if using YAML) of active profiles.
spring.profiles.include= # Unconditionally activate the specified comma separated profiles (or list of profiles if using YAML).

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

142 of 180 05/12/2016 20:33

SENDGRID (SendGridAutoConfiguration)
spring.sendgrid.api-key= # SendGrid api key (alternative to username/password)
spring.sendgrid.username= # SendGrid account username
spring.sendgrid.password= # SendGrid account password
spring.sendgrid.proxy.host= # SendGrid proxy host
spring.sendgrid.proxy.port= # SendGrid proxy port

--
WEB PROPERTIES
--

EMBEDDED SERVER CONFIGURATION (ServerProperties)
server.address= # Network address to which the server should bind to.
server.compression.enabled=false # If response compression is enabled.
server.compression.excluded-user-agents= # List of user-agents to exclude from compression.
server.compression.mime-types= # Comma-separated list of MIME types that should be compressed. For instance `text/html,text/css,application/json`
server.compression.min-response-size= # Minimum response size that is required for compression to be performed. For instance 2048
server.connection-timeout= # Time in milliseconds that connectors will wait for another HTTP request before closing the connection. When not set, the con
server.context-parameters.*= # Servlet context init parameters. For instance `server.context-parameters.a=alpha`
server.context-path= # Context path of the application.
server.display-name=application # Display name of the application.
server.max-http-header-size=0 # Maximum size in bytes of the HTTP message header.
server.error.include-stacktrace=never # When to include a "stacktrace" attribute.
server.error.path=/error # Path of the error controller.
server.error.whitelabel.enabled=true # Enable the default error page displayed in browsers in case of a server error.
server.jetty.acceptors= # Number of acceptor threads to use.
server.jetty.max-http-post-size=0 # Maximum size in bytes of the HTTP post or put content.
server.jetty.selectors= # Number of selector threads to use.
server.jsp-servlet.class-name=org.apache.jasper.servlet.JspServlet # The class name of the JSP servlet.
server.jsp-servlet.init-parameters.*= # Init parameters used to configure the JSP servlet
server.jsp-servlet.registered=true # Whether or not the JSP servlet is registered
server.port=8080 # Server HTTP port.
server.server-header= # Value to use for the Server response header (no header is sent if empty)
server.servlet-path=/ # Path of the main dispatcher servlet.
server.use-forward-headers= # If X-Forwarded-* headers should be applied to the HttpRequest.
server.session.cookie.comment= # Comment for the session cookie.
server.session.cookie.domain= # Domain for the session cookie.
server.session.cookie.http-only= # "HttpOnly" flag for the session cookie.
server.session.cookie.max-age= # Maximum age of the session cookie in seconds.
server.session.cookie.name= # Session cookie name.
server.session.cookie.path= # Path of the session cookie.
server.session.cookie.secure= # "Secure" flag for the session cookie.
server.session.persistent=false # Persist session data between restarts.
server.session.store-dir= # Directory used to store session data.
server.session.timeout= # Session timeout in seconds.
server.session.tracking-modes= # Session tracking modes (one or more of the following: "cookie", "url", "ssl").
server.ssl.ciphers= # Supported SSL ciphers.
server.ssl.client-auth= # Whether client authentication is wanted ("want") or needed ("need"). Requires a trust store.
server.ssl.enabled= # Enable SSL support.
server.ssl.enabled-protocols= # Enabled SSL protocols.
server.ssl.key-alias= # Alias that identifies the key in the key store.
server.ssl.key-password= # Password used to access the key in the key store.
server.ssl.key-store= # Path to the key store that holds the SSL certificate (typically a jks file).
server.ssl.key-store-password= # Password used to access the key store.
server.ssl.key-store-provider= # Provider for the key store.
server.ssl.key-store-type= # Type of the key store.
server.ssl.protocol=TLS # SSL protocol to use.
server.ssl.trust-store= # Trust store that holds SSL certificates.
server.ssl.trust-store-password= # Password used to access the trust store.
server.ssl.trust-store-provider= # Provider for the trust store.
server.ssl.trust-store-type= # Type of the trust store.
server.tomcat.accept-count= # Maximum queue length for incoming connection requests when all possible request processing threads are in use.
server.tomcat.accesslog.directory=logs # Directory in which log files are created. Can be relative to the tomcat base dir or absolute.
server.tomcat.accesslog.enabled=false # Enable access log.
server.tomcat.accesslog.pattern=common # Format pattern for access logs.
server.tomcat.accesslog.prefix=access_log # Log file name prefix.
server.tomcat.accesslog.rename-on-rotate=false # Defer inclusion of the date stamp in the file name until rotate time.
server.tomcat.accesslog.request-attributes-enabled=false # Set request attributes for IP address, Hostname, protocol and port used for the request.
server.tomcat.accesslog.rotate=true # Enable access log rotation.
server.tomcat.accesslog.suffix=.log # Log file name suffix.
server.tomcat.additional-tld-skip-patterns= # Comma-separated list of additional patterns that match jars to ignore for TLD scanning.
server.tomcat.background-processor-delay=30 # Delay in seconds between the invocation of backgroundProcess methods.
server.tomcat.basedir= # Tomcat base directory. If not specified a temporary directory will be used.
server.tomcat.internal-proxies=10\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\
 192\\.168\\.\\d{1,3}\\.\\d{1,3}|\\
 169\\.254\\.\\d{1,3}\\.\\d{1,3}|\\
 127\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\
 172\\.1[6-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\
 172\\.2[0-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\
 172\\.3[0-1]{1}\\.\\d{1,3}\\.\\d{1,3} # regular expression matching trusted IP addresses.
server.tomcat.max-connections= # Maximum number of connections that the server will accept and process at any given time.
server.tomcat.max-http-post-size=0 # Maximum size in bytes of the HTTP post content.
server.tomcat.max-threads=0 # Maximum amount of worker threads.
server.tomcat.min-spare-threads=0 # Minimum amount of worker threads.
server.tomcat.port-header=X-Forwarded-Port # Name of the HTTP header used to override the original port value.
server.tomcat.protocol-header= # Header that holds the incoming protocol, usually named "X-Forwarded-Proto".
server.tomcat.protocol-header-https-value=https # Value of the protocol header that indicates that the incoming request uses SSL.
server.tomcat.redirect-context-root= # Whether requests to the context root should be redirected by appending a / to the path.
server.tomcat.remote-ip-header= # Name of the http header from which the remote ip is extracted. For instance `X-FORWARDED-FOR`
server.tomcat.uri-encoding=UTF-8 # Character encoding to use to decode the URI.
server.undertow.accesslog.dir= # Undertow access log directory.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

143 of 180 05/12/2016 20:33

server.undertow.accesslog.enabled=false # Enable access log.
server.undertow.accesslog.pattern=common # Format pattern for access logs.
server.undertow.accesslog.prefix=access_log. # Log file name prefix.
server.undertow.accesslog.rotate=true # Enable access log rotation.
server.undertow.accesslog.suffix=log # Log file name suffix.
server.undertow.buffer-size= # Size of each buffer in bytes.
server.undertow.buffers-per-region= # Number of buffer per region.
server.undertow.direct-buffers= # Allocate buffers outside the Java heap.
server.undertow.io-threads= # Number of I/O threads to create for the worker.
server.undertow.max-http-post-size=0 # Maximum size in bytes of the HTTP post content.
server.undertow.worker-threads= # Number of worker threads.

FREEMARKER (FreeMarkerAutoConfiguration)
spring.freemarker.allow-request-override=false # Set whether HttpServletRequest attributes are allowed to override (hide) controller generated model attr
spring.freemarker.allow-session-override=false # Set whether HttpSession attributes are allowed to override (hide) controller generated model attributes
spring.freemarker.cache=false # Enable template caching.
spring.freemarker.charset=UTF-8 # Template encoding.
spring.freemarker.check-template-location=true # Check that the templates location exists.
spring.freemarker.content-type=text/html # Content-Type value.
spring.freemarker.enabled=true # Enable MVC view resolution for this technology.
spring.freemarker.expose-request-attributes=false # Set whether all request attributes should be added to the model prior to merging with the template.
spring.freemarker.expose-session-attributes=false # Set whether all HttpSession attributes should be added to the model prior to merging with the templat
spring.freemarker.expose-spring-macro-helpers=true # Set whether to expose a RequestContext for use by Spring's macro library, under the name "springMacr
spring.freemarker.prefer-file-system-access=true # Prefer file system access for template loading. File system access enables hot detection of template c
spring.freemarker.prefix= # Prefix that gets prepended to view names when building a URL.
spring.freemarker.request-context-attribute= # Name of the RequestContext attribute for all views.
spring.freemarker.settings.*= # Well-known FreeMarker keys which will be passed to FreeMarker's Configuration.
spring.freemarker.suffix= # Suffix that gets appended to view names when building a URL.
spring.freemarker.template-loader-path=classpath:/templates/ # Comma-separated list of template paths.
spring.freemarker.view-names= # White list of view names that can be resolved.

GROOVY TEMPLATES (GroovyTemplateAutoConfiguration)
spring.groovy.template.allow-request-override=false # Set whether HttpServletRequest attributes are allowed to override (hide) controller generated model
spring.groovy.template.allow-session-override=false # Set whether HttpSession attributes are allowed to override (hide) controller generated model attrib
spring.groovy.template.cache= # Enable template caching.
spring.groovy.template.charset=UTF-8 # Template encoding.
spring.groovy.template.check-template-location=true # Check that the templates location exists.
spring.groovy.template.configuration.*= # See GroovyMarkupConfigurer
spring.groovy.template.content-type=test/html # Content-Type value.
spring.groovy.template.enabled=true # Enable MVC view resolution for this technology.
spring.groovy.template.expose-request-attributes=false # Set whether all request attributes should be added to the model prior to merging with the templa
spring.groovy.template.expose-session-attributes=false # Set whether all HttpSession attributes should be added to the model prior to merging with the te
spring.groovy.template.expose-spring-macro-helpers=true # Set whether to expose a RequestContext for use by Spring's macro library, under the name "sprin
spring.groovy.template.prefix= # Prefix that gets prepended to view names when building a URL.
spring.groovy.template.request-context-attribute= # Name of the RequestContext attribute for all views.
spring.groovy.template.resource-loader-path=classpath:/templates/ # Template path.
spring.groovy.template.suffix=.tpl # Suffix that gets appended to view names when building a URL.
spring.groovy.template.view-names= # White list of view names that can be resolved.

SPRING HATEOAS (HateoasProperties)
spring.hateoas.use-hal-as-default-json-media-type=true # Specify if application/hal+json responses should be sent to requests that accept application/jso

HTTP message conversion
spring.http.converters.preferred-json-mapper=jackson # Preferred JSON mapper to use for HTTP message conversion. Set to "gson" to force the use of Gson w

HTTP encoding (HttpEncodingProperties)
spring.http.encoding.charset=UTF-8 # Charset of HTTP requests and responses. Added to the "Content-Type" header if not set explicitly.
spring.http.encoding.enabled=true # Enable http encoding support.
spring.http.encoding.force= # Force the encoding to the configured charset on HTTP requests and responses.
spring.http.encoding.force-request= # Force the encoding to the configured charset on HTTP requests. Defaults to true when "force" has not been specified
spring.http.encoding.force-response= # Force the encoding to the configured charset on HTTP responses.
spring.http.encoding.mapping= # Locale to Encoding mapping.

MULTIPART (MultipartProperties)
spring.http.multipart.enabled=true # Enable support of multi-part uploads.
spring.http.multipart.file-size-threshold=0 # Threshold after which files will be written to disk. Values can use the suffixed "MB" or "KB" to indicate a
spring.http.multipart.location= # Intermediate location of uploaded files.
spring.http.multipart.max-file-size=1MB # Max file size. Values can use the suffixed "MB" or "KB" to indicate a Megabyte or Kilobyte size.
spring.http.multipart.max-request-size=10MB # Max request size. Values can use the suffixed "MB" or "KB" to indicate a Megabyte or Kilobyte size.
spring.http.multipart.resolve-lazily=false # Whether to resolve the multipart request lazily at the time of file or parameter access.

JACKSON (JacksonProperties)
spring.jackson.date-format= # Date format string or a fully-qualified date format class name. For instance `yyyy-MM-dd HH:mm:ss`.
spring.jackson.default-property-inclusion= # Controls the inclusion of properties during serialization.
spring.jackson.deserialization.*= # Jackson on/off features that affect the way Java objects are deserialized.
spring.jackson.generator.*= # Jackson on/off features for generators.
spring.jackson.joda-date-time-format= # Joda date time format string. If not configured, "date-format" will be used as a fallback if it is configured wit
spring.jackson.locale= # Locale used for formatting.
spring.jackson.mapper.*= # Jackson general purpose on/off features.
spring.jackson.parser.*= # Jackson on/off features for parsers.
spring.jackson.property-naming-strategy= # One of the constants on Jackson's PropertyNamingStrategy. Can also be a fully-qualified class name of a Proper
spring.jackson.serialization.*= # Jackson on/off features that affect the way Java objects are serialized.
spring.jackson.time-zone= # Time zone used when formatting dates. For instance `America/Los_Angeles`

JERSEY (JerseyProperties)
spring.jersey.application-path= # Path that serves as the base URI for the application. Overrides the value of "@ApplicationPath" if specified.
spring.jersey.filter.order=0 # Jersey filter chain order.
spring.jersey.init.*= # Init parameters to pass to Jersey via the servlet or filter.
spring.jersey.servlet.load-on-startup=-1 # Load on startup priority of the Jersey servlet.
spring.jersey.type=servlet # Jersey integration type.

SPRING MOBILE DEVICE VIEWS (DeviceDelegatingViewResolverAutoConfiguration)

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

144 of 180 05/12/2016 20:33

spring.mobile.devicedelegatingviewresolver.enable-fallback=false # Enable support for fallback resolution.
spring.mobile.devicedelegatingviewresolver.enabled=false # Enable device view resolver.
spring.mobile.devicedelegatingviewresolver.mobile-prefix=mobile/ # Prefix that gets prepended to view names for mobile devices.
spring.mobile.devicedelegatingviewresolver.mobile-suffix= # Suffix that gets appended to view names for mobile devices.
spring.mobile.devicedelegatingviewresolver.normal-prefix= # Prefix that gets prepended to view names for normal devices.
spring.mobile.devicedelegatingviewresolver.normal-suffix= # Suffix that gets appended to view names for normal devices.
spring.mobile.devicedelegatingviewresolver.tablet-prefix=tablet/ # Prefix that gets prepended to view names for tablet devices.
spring.mobile.devicedelegatingviewresolver.tablet-suffix= # Suffix that gets appended to view names for tablet devices.

SPRING MOBILE SITE PREFERENCE (SitePreferenceAutoConfiguration)
spring.mobile.sitepreference.enabled=true # Enable SitePreferenceHandler.

MUSTACHE TEMPLATES (MustacheAutoConfiguration)
spring.mustache.allow-request-override= # Set whether HttpServletRequest attributes are allowed to override (hide) controller generated model attributes
spring.mustache.allow-session-override= # Set whether HttpSession attributes are allowed to override (hide) controller generated model attributes of the
spring.mustache.cache= # Enable template caching.
spring.mustache.charset= # Template encoding.
spring.mustache.check-template-location= # Check that the templates location exists.
spring.mustache.content-type= # Content-Type value.
spring.mustache.enabled= # Enable MVC view resolution for this technology.
spring.mustache.expose-request-attributes= # Set whether all request attributes should be added to the model prior to merging with the template.
spring.mustache.expose-session-attributes= # Set whether all HttpSession attributes should be added to the model prior to merging with the template.
spring.mustache.expose-spring-macro-helpers= # Set whether to expose a RequestContext for use by Spring's macro library, under the name "springMacroReque
spring.mustache.prefix=classpath:/templates/ # Prefix to apply to template names.
spring.mustache.request-context-attribute= # Name of the RequestContext attribute for all views.
spring.mustache.suffix=.html # Suffix to apply to template names.
spring.mustache.view-names= # White list of view names that can be resolved.

SPRING MVC (WebMvcProperties)
spring.mvc.async.request-timeout= # Amount of time (in milliseconds) before asynchronous request handling times out.
spring.mvc.date-format= # Date format to use. For instance `dd/MM/yyyy`.
spring.mvc.dispatch-trace-request=false # Dispatch TRACE requests to the FrameworkServlet doService method.
spring.mvc.dispatch-options-request=true # Dispatch OPTIONS requests to the FrameworkServlet doService method.
spring.mvc.favicon.enabled=true # Enable resolution of favicon.ico.
spring.mvc.formcontent.putfilter.enabled=true # Enable Spring's HttpPutFormContentFilter.
spring.mvc.ignore-default-model-on-redirect=true # If the content of the "default" model should be ignored during redirect scenarios.
spring.mvc.locale= # Locale to use. By default, this locale is overridden by the "Accept-Language" header.
spring.mvc.locale-resolver=accept-header # Define how the locale should be resolved.
spring.mvc.log-resolved-exception=false # Enable warn logging of exceptions resolved by a "HandlerExceptionResolver".
spring.mvc.media-types.*= # Maps file extensions to media types for content negotiation.
spring.mvc.message-codes-resolver-format= # Formatting strategy for message codes. For instance `PREFIX_ERROR_CODE`.
spring.mvc.servlet.load-on-startup=-1 # Load on startup priority of the Spring Web Services servlet.
spring.mvc.static-path-pattern=/** # Path pattern used for static resources.
spring.mvc.throw-exception-if-no-handler-found=false # If a "NoHandlerFoundException" should be thrown if no Handler was found to process a request.
spring.mvc.view.prefix= # Spring MVC view prefix.
spring.mvc.view.suffix= # Spring MVC view suffix.

SPRING RESOURCES HANDLING (ResourceProperties)
spring.resources.add-mappings=true # Enable default resource handling.
spring.resources.cache-period= # Cache period for the resources served by the resource handler, in seconds.
spring.resources.chain.cache=true # Enable caching in the Resource chain.
spring.resources.chain.enabled= # Enable the Spring Resource Handling chain. Disabled by default unless at least one strategy has been enabled.
spring.resources.chain.gzipped=false # Enable resolution of already gzipped resources.
spring.resources.chain.html-application-cache=false # Enable HTML5 application cache manifest rewriting.
spring.resources.chain.strategy.content.enabled=false # Enable the content Version Strategy.
spring.resources.chain.strategy.content.paths=/** # Comma-separated list of patterns to apply to the Version Strategy.
spring.resources.chain.strategy.fixed.enabled=false # Enable the fixed Version Strategy.
spring.resources.chain.strategy.fixed.paths=/** # Comma-separated list of patterns to apply to the Version Strategy.
spring.resources.chain.strategy.fixed.version= # Version string to use for the Version Strategy.
spring.resources.static-locations=classpath:/META-INF/resources/,classpath:/resources/,classpath:/static/,classpath:/public/ # Locations of static resour

SPRING SESSION (SessionProperties)
spring.session.hazelcast.flush-mode= # Sessions flush mode.
spring.session.hazelcast.map-name=spring:session:sessions # Name of the map used to store sessions.
spring.session.jdbc.initializer.enabled= # Create the required session tables on startup if necessary. Enabled automatically if the default table name is
spring.session.jdbc.schema=classpath:org/springframework/session/jdbc/schema-@@platform@@.sql # Path to the SQL file to use to initialize the database sc
spring.session.jdbc.table-name=SPRING_SESSION # Name of database table used to store sessions.
spring.session.mongo.collection-name=sessions # Collection name used to store sessions.
spring.session.redis.flush-mode= # Sessions flush mode.
spring.session.redis.namespace= # Namespace for keys used to store sessions.
spring.session.store-type= # Session store type.

SPRING SOCIAL (SocialWebAutoConfiguration)
spring.social.auto-connection-views=false # Enable the connection status view for supported providers.

SPRING SOCIAL FACEBOOK (FacebookAutoConfiguration)
spring.social.facebook.app-id= # your application's Facebook App ID
spring.social.facebook.app-secret= # your application's Facebook App Secret

SPRING SOCIAL LINKEDIN (LinkedInAutoConfiguration)
spring.social.linkedin.app-id= # your application's LinkedIn App ID
spring.social.linkedin.app-secret= # your application's LinkedIn App Secret

SPRING SOCIAL TWITTER (TwitterAutoConfiguration)
spring.social.twitter.app-id= # your application's Twitter App ID
spring.social.twitter.app-secret= # your application's Twitter App Secret

THYMELEAF (ThymeleafAutoConfiguration)
spring.thymeleaf.cache=true # Enable template caching.
spring.thymeleaf.check-template=true # Check that the template exists before rendering it.
spring.thymeleaf.check-template-location=true # Check that the templates location exists.
spring.thymeleaf.content-type=text/html # Content-Type value.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

145 of 180 05/12/2016 20:33

spring.thymeleaf.enabled=true # Enable MVC Thymeleaf view resolution.
spring.thymeleaf.encoding=UTF-8 # Template encoding.
spring.thymeleaf.excluded-view-names= # Comma-separated list of view names that should be excluded from resolution.
spring.thymeleaf.mode=HTML5 # Template mode to be applied to templates. See also StandardTemplateModeHandlers.
spring.thymeleaf.prefix=classpath:/templates/ # Prefix that gets prepended to view names when building a URL.
spring.thymeleaf.suffix=.html # Suffix that gets appended to view names when building a URL.
spring.thymeleaf.template-resolver-order= # Order of the template resolver in the chain.
spring.thymeleaf.view-names= # Comma-separated list of view names that can be resolved.

SPRING WEB SERVICES (WebServicesProperties)
spring.webservices.path=/services # Path that serves as the base URI for the services.
spring.webservices.servlet.init= # Servlet init parameters to pass to Spring Web Services.
spring.webservices.servlet.load-on-startup=-1 # Load on startup priority of the Spring Web Services servlet.

--
SECURITY PROPERTIES
--
SECURITY (SecurityProperties)
security.basic.authorize-mode=role # Security authorize mode to apply.
security.basic.enabled=true # Enable basic authentication.
security.basic.path=/** # Comma-separated list of paths to secure.
security.basic.realm=Spring # HTTP basic realm name.
security.enable-csrf=false # Enable Cross Site Request Forgery support.
security.filter-order=0 # Security filter chain order.
security.filter-dispatcher-types=ASYNC, FORWARD, INCLUDE, REQUEST # Security filter chain dispatcher types.
security.headers.cache=true # Enable cache control HTTP headers.
security.headers.content-security-policy= # Value for content security policy header.
security.headers.content-security-policy-mode=default # Content security policy mode.
security.headers.content-type=true # Enable "X-Content-Type-Options" header.
security.headers.frame=true # Enable "X-Frame-Options" header.
security.headers.hsts= # HTTP Strict Transport Security (HSTS) mode (none, domain, all).
security.headers.xss=true # Enable cross site scripting (XSS) protection.
security.ignored= # Comma-separated list of paths to exclude from the default secured paths.
security.require-ssl=false # Enable secure channel for all requests.
security.sessions=stateless # Session creation policy (always, never, if_required, stateless).
security.user.name=user # Default user name.
security.user.password= # Password for the default user name. A random password is logged on startup by default.
security.user.role=USER # Granted roles for the default user name.

SECURITY OAUTH2 CLIENT (OAuth2ClientProperties)
security.oauth2.client.client-id= # OAuth2 client id.
security.oauth2.client.client-secret= # OAuth2 client secret. A random secret is generated by default

SECURITY OAUTH2 RESOURCES (ResourceServerProperties)
security.oauth2.resource.id= # Identifier of the resource.
security.oauth2.resource.jwt.key-uri= # The URI of the JWT token. Can be set if the value is not available and the key is public.
security.oauth2.resource.jwt.key-value= # The verification key of the JWT token. Can either be a symmetric secret or PEM-encoded RSA public key.
security.oauth2.resource.prefer-token-info=true # Use the token info, can be set to false to use the user info.
security.oauth2.resource.service-id=resource #
security.oauth2.resource.token-info-uri= # URI of the token decoding endpoint.
security.oauth2.resource.token-type= # The token type to send when using the userInfoUri.
security.oauth2.resource.user-info-uri= # URI of the user endpoint.

SECURITY OAUTH2 SSO (OAuth2SsoProperties)
security.oauth2.sso.filter-order= # Filter order to apply if not providing an explicit WebSecurityConfigurerAdapter
security.oauth2.sso.login-path=/login # Path to the login page, i.e. the one that triggers the redirect to the OAuth2 Authorization Server

--
DATA PROPERTIES
--

FLYWAY (FlywayProperties)
flyway.baseline-description= #
flyway.baseline-version=1 # version to start migration
flyway.baseline-on-migrate= #
flyway.check-location=false # Check that migration scripts location exists.
flyway.clean-on-validation-error= #
flyway.enabled=true # Enable flyway.
flyway.encoding= #
flyway.ignore-failed-future-migration= #
flyway.init-sqls= # SQL statements to execute to initialize a connection immediately after obtaining it.
flyway.locations=classpath:db/migration # locations of migrations scripts
flyway.out-of-order= #
flyway.password= # JDBC password if you want Flyway to create its own DataSource
flyway.placeholder-prefix= #
flyway.placeholder-replacement= #
flyway.placeholder-suffix= #
flyway.placeholders.*= #
flyway.schemas= # schemas to update
flyway.sql-migration-prefix=V #
flyway.sql-migration-separator= #
flyway.sql-migration-suffix=.sql #
flyway.table= #
flyway.url= # JDBC url of the database to migrate. If not set, the primary configured data source is used.
flyway.user= # Login user of the database to migrate.
flyway.validate-on-migrate= #

LIQUIBASE (LiquibaseProperties)
liquibase.change-log=classpath:/db/changelog/db.changelog-master.yaml # Change log configuration path.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

146 of 180 05/12/2016 20:33

liquibase.check-change-log-location=true # Check the change log location exists.
liquibase.contexts= # Comma-separated list of runtime contexts to use.
liquibase.default-schema= # Default database schema.
liquibase.drop-first=false # Drop the database schema first.
liquibase.enabled=true # Enable liquibase support.
liquibase.labels= # Comma-separated list of runtime labels to use.
liquibase.parameters.*= # Change log parameters.
liquibase.password= # Login password of the database to migrate.
liquibase.rollback-file= # File to which rollback SQL will be written when an update is performed.
liquibase.url= # JDBC url of the database to migrate. If not set, the primary configured data source is used.
liquibase.user= # Login user of the database to migrate.

COUCHBASE (CouchbaseProperties)
spring.couchbase.bootstrap-hosts= # Couchbase nodes (host or IP address) to bootstrap from.
spring.couchbase.bucket.name=default # Name of the bucket to connect to.
spring.couchbase.bucket.password= # Password of the bucket.
spring.couchbase.env.endpoints.key-value=1 # Number of sockets per node against the Key/value service.
spring.couchbase.env.endpoints.query=1 # Number of sockets per node against the Query (N1QL) service.
spring.couchbase.env.endpoints.view=1 # Number of sockets per node against the view service.
spring.couchbase.env.ssl.enabled= # Enable SSL support. Enabled automatically if a "keyStore" is provided unless specified otherwise.
spring.couchbase.env.ssl.key-store= # Path to the JVM key store that holds the certificates.
spring.couchbase.env.ssl.key-store-password= # Password used to access the key store.
spring.couchbase.env.timeouts.connect=5000 # Bucket connections timeout in milliseconds.
spring.couchbase.env.timeouts.key-value=2500 # Blocking operations performed on a specific key timeout in milliseconds.
spring.couchbase.env.timeouts.query=7500 # N1QL query operations timeout in milliseconds.
spring.couchbase.env.timeouts.socket-connect=1000 # Socket connect connections timeout in milliseconds.
spring.couchbase.env.timeouts.view=7500 # Regular and geospatial view operations timeout in milliseconds.

DAO (PersistenceExceptionTranslationAutoConfiguration)
spring.dao.exceptiontranslation.enabled=true # Enable the PersistenceExceptionTranslationPostProcessor.

CASSANDRA (CassandraProperties)
spring.data.cassandra.cluster-name= # Name of the Cassandra cluster.
spring.data.cassandra.compression= # Compression supported by the Cassandra binary protocol.
spring.data.cassandra.connect-timeout-millis= # Socket option: connection time out.
spring.data.cassandra.consistency-level= # Queries consistency level.
spring.data.cassandra.contact-points=localhost # Comma-separated list of cluster node addresses.
spring.data.cassandra.fetch-size= # Queries default fetch size.
spring.data.cassandra.keyspace-name= # Keyspace name to use.
spring.data.cassandra.load-balancing-policy= # Class name of the load balancing policy.
spring.data.cassandra.port= # Port of the Cassandra server.
spring.data.cassandra.password= # Login password of the server.
spring.data.cassandra.read-timeout-millis= # Socket option: read time out.
spring.data.cassandra.reconnection-policy= # Reconnection policy class.
spring.data.cassandra.retry-policy= # Class name of the retry policy.
spring.data.cassandra.serial-consistency-level= # Queries serial consistency level.
spring.data.cassandra.schema-action=none # Schema action to take at startup.
spring.data.cassandra.ssl=false # Enable SSL support.
spring.data.cassandra.username= # Login user of the server.

DATA COUCHBASE (CouchbaseDataProperties)
spring.data.couchbase.auto-index=false # Automatically create views and indexes.
spring.data.couchbase.consistency=read-your-own-writes # Consistency to apply by default on generated queries.
spring.data.couchbase.repositories.enabled=true # Enable Couchbase repositories.

ELASTICSEARCH (ElasticsearchProperties)
spring.data.elasticsearch.cluster-name=elasticsearch # Elasticsearch cluster name.
spring.data.elasticsearch.cluster-nodes= # Comma-separated list of cluster node addresses. If not specified, starts a client node.
spring.data.elasticsearch.properties.*= # Additional properties used to configure the client.
spring.data.elasticsearch.repositories.enabled=true # Enable Elasticsearch repositories.

MONGODB (MongoProperties)
spring.data.mongodb.authentication-database= # Authentication database name.
spring.data.mongodb.database=test # Database name.
spring.data.mongodb.field-naming-strategy= # Fully qualified name of the FieldNamingStrategy to use.
spring.data.mongodb.grid-fs-database= # GridFS database name.
spring.data.mongodb.host=localhost # Mongo server host. Cannot be set with uri.
spring.data.mongodb.password= # Login password of the mongo server. Cannot be set with uri.
spring.data.mongodb.port=27017 # Mongo server port. Cannot be set with uri.
spring.data.mongodb.repositories.enabled=true # Enable Mongo repositories.
spring.data.mongodb.uri=mongodb://localhost/test # Mongo database URI. Cannot be set with host, port and credentials.
spring.data.mongodb.username= # Login user of the mongo server. Cannot be set with uri.

DATA REDIS
spring.data.redis.repositories.enabled=true # Enable Redis repositories.

NEO4J (Neo4jProperties)
spring.data.neo4j.compiler= # Compiler to use.
spring.data.neo4j.embedded.enabled=true # Enable embedded mode if the embedded driver is available.
spring.data.neo4j.open-in-view=false # Register OpenSessionInViewInterceptor. Binds a Neo4j Session to the thread for the entire processing of the reques
spring.data.neo4j.password= # Login password of the server.
spring.data.neo4j.repositories.enabled=true # Enable Neo4j repositories.
spring.data.neo4j.uri= # URI used by the driver. Auto-detected by default.
spring.data.neo4j.username= # Login user of the server.

DATA REST (RepositoryRestProperties)
spring.data.rest.base-path= # Base path to be used by Spring Data REST to expose repository resources.
spring.data.rest.default-page-size= # Default size of pages.
spring.data.rest.detection-strategy=default # Strategy to use to determine which repositories get exposed.
spring.data.rest.enable-enum-translation= # Enable enum value translation via the Spring Data REST default resource bundle.
spring.data.rest.limit-param-name= # Name of the URL query string parameter that indicates how many results to return at once.
spring.data.rest.max-page-size= # Maximum size of pages.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

147 of 180 05/12/2016 20:33

spring.data.rest.page-param-name= # Name of the URL query string parameter that indicates what page to return.
spring.data.rest.return-body-on-create= # Return a response body after creating an entity.
spring.data.rest.return-body-on-update= # Return a response body after updating an entity.
spring.data.rest.sort-param-name= # Name of the URL query string parameter that indicates what direction to sort results.

SOLR (SolrProperties)
spring.data.solr.host=http://127.0.0.1:8983/solr # Solr host. Ignored if "zk-host" is set.
spring.data.solr.repositories.enabled=true # Enable Solr repositories.
spring.data.solr.zk-host= # ZooKeeper host address in the form HOST:PORT.

DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)
spring.datasource.continue-on-error=false # Do not stop if an error occurs while initializing the database.
spring.datasource.data= # Data (DML) script resource references.
spring.datasource.data-username= # User of the database to execute DML scripts (if different).
spring.datasource.data-password= # Password of the database to execute DML scripts (if different).
spring.datasource.dbcp2.*= # Commons DBCP2 specific settings
spring.datasource.driver-class-name= # Fully qualified name of the JDBC driver. Auto-detected based on the URL by default.
spring.datasource.generate-unique-name=false # Generate a random datasource name.
spring.datasource.hikari.*= # Hikari specific settings
spring.datasource.initialize=true # Populate the database using 'data.sql'.
spring.datasource.jmx-enabled=false # Enable JMX support (if provided by the underlying pool).
spring.datasource.jndi-name= # JNDI location of the datasource. Class, url, username & password are ignored when set.
spring.datasource.name=testdb # Name of the datasource.
spring.datasource.password= # Login password of the database.
spring.datasource.platform=all # Platform to use in the schema resource (schema-${platform}.sql).
spring.datasource.schema= # Schema (DDL) script resource references.
spring.datasource.schema-username= # User of the database to execute DDL scripts (if different).
spring.datasource.schema-password= # Password of the database to execute DDL scripts (if different).
spring.datasource.separator=; # Statement separator in SQL initialization scripts.
spring.datasource.sql-script-encoding= # SQL scripts encoding.
spring.datasource.tomcat.*= # Tomcat datasource specific settings
spring.datasource.type= # Fully qualified name of the connection pool implementation to use. By default, it is auto-detected from the classpath.
spring.datasource.url= # JDBC url of the database.
spring.datasource.username=

JEST (Elasticsearch HTTP client) (JestProperties)
spring.elasticsearch.jest.connection-timeout=3000 # Connection timeout in milliseconds.
spring.elasticsearch.jest.password= # Login password.
spring.elasticsearch.jest.proxy.host= # Proxy host the HTTP client should use.
spring.elasticsearch.jest.proxy.port= # Proxy port the HTTP client should use.
spring.elasticsearch.jest.read-timeout=3000 # Read timeout in milliseconds.
spring.elasticsearch.jest.uris=http://localhost:9200 # Comma-separated list of the Elasticsearch instances to use.
spring.elasticsearch.jest.username= # Login user.

H2 Web Console (H2ConsoleProperties)
spring.h2.console.enabled=false # Enable the console.
spring.h2.console.path=/h2-console # Path at which the console will be available.
spring.h2.console.settings.trace=false # Enable trace output.
spring.h2.console.settings.web-allow-others=false # Enable remote access.

JOOQ (JooqAutoConfiguration)
spring.jooq.sql-dialect= # SQLDialect JOOQ used when communicating with the configured datasource. For instance `POSTGRES`

JPA (JpaBaseConfiguration, HibernateJpaAutoConfiguration)
spring.data.jpa.repositories.enabled=true # Enable JPA repositories.
spring.jpa.database= # Target database to operate on, auto-detected by default. Can be alternatively set using the "databasePlatform" property.
spring.jpa.database-platform= # Name of the target database to operate on, auto-detected by default. Can be alternatively set using the "Database" enum.
spring.jpa.generate-ddl=false # Initialize the schema on startup.
spring.jpa.hibernate.ddl-auto= # DDL mode. This is actually a shortcut for the "hibernate.hbm2ddl.auto" property. Default to "create-drop" when using an
spring.jpa.hibernate.naming.implicit-strategy= # Hibernate 5 implicit naming strategy fully qualified name.
spring.jpa.hibernate.naming.physical-strategy= # Hibernate 5 physical naming strategy fully qualified name.
spring.jpa.hibernate.naming.strategy= # Hibernate 4 naming strategy fully qualified name. Not supported with Hibernate 5.
spring.jpa.hibernate.use-new-id-generator-mappings= # Use Hibernate's newer IdentifierGenerator for AUTO, TABLE and SEQUENCE.
spring.jpa.open-in-view=true # Register OpenEntityManagerInViewInterceptor. Binds a JPA EntityManager to the thread for the entire processing of the requ
spring.jpa.properties.*= # Additional native properties to set on the JPA provider.
spring.jpa.show-sql=false # Enable logging of SQL statements.

JTA (JtaAutoConfiguration)
spring.jta.enabled=true # Enable JTA support.
spring.jta.log-dir= # Transaction logs directory.
spring.jta.transaction-manager-id= # Transaction manager unique identifier.

ATOMIKOS (AtomikosProperties)
spring.jta.atomikos.connectionfactory.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing connections from the pool.
spring.jta.atomikos.connectionfactory.ignore-session-transacted-flag=true # Whether or not to ignore the transacted flag when creating session.
spring.jta.atomikos.connectionfactory.local-transaction-mode=false # Whether or not local transactions are desired.
spring.jta.atomikos.connectionfactory.maintenance-interval=60 # The time, in seconds, between runs of the pool's maintenance thread.
spring.jta.atomikos.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool.
spring.jta.atomikos.connectionfactory.max-lifetime=0 # The time, in seconds, that a connection can be pooled for before being destroyed. 0 denotes no lim
spring.jta.atomikos.connectionfactory.max-pool-size=1 # The maximum size of the pool.
spring.jta.atomikos.connectionfactory.min-pool-size=1 # The minimum size of the pool.
spring.jta.atomikos.connectionfactory.reap-timeout=0 # The reap timeout, in seconds, for borrowed connections. 0 denotes no limit.
spring.jta.atomikos.connectionfactory.unique-resource-name=jmsConnectionFactory # The unique name used to identify the resource during recovery.
spring.jta.atomikos.datasource.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing connections from the pool.
spring.jta.atomikos.datasource.default-isolation-level= # Default isolation level of connections provided by the pool.
spring.jta.atomikos.datasource.login-timeout= # Timeout, in seconds, for establishing a database connection.
spring.jta.atomikos.datasource.maintenance-interval=60 # The time, in seconds, between runs of the pool's maintenance thread.
spring.jta.atomikos.datasource.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool.
spring.jta.atomikos.datasource.max-lifetime=0 # The time, in seconds, that a connection can be pooled for before being destroyed. 0 denotes no limit.
spring.jta.atomikos.datasource.max-pool-size=1 # The maximum size of the pool.
spring.jta.atomikos.datasource.min-pool-size=1 # The minimum size of the pool.
spring.jta.atomikos.datasource.reap-timeout=0 # The reap timeout, in seconds, for borrowed connections. 0 denotes no limit.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

148 of 180 05/12/2016 20:33

spring.jta.atomikos.datasource.test-query= # SQL query or statement used to validate a connection before returning it.
spring.jta.atomikos.datasource.unique-resource-name=dataSource # The unique name used to identify the resource during recovery.
spring.jta.atomikos.properties.checkpoint-interval=500 # Interval between checkpoints.
spring.jta.atomikos.properties.console-file-count=1 # Number of debug logs files that can be created.
spring.jta.atomikos.properties.console-file-limit=-1 # How many bytes can be stored at most in debug logs files.
spring.jta.atomikos.properties.console-file-name=tm.out # Debug logs file name.
spring.jta.atomikos.properties.console-log-level= # Console log level.
spring.jta.atomikos.properties.default-jta-timeout=10000 # Default timeout for JTA transactions.
spring.jta.atomikos.properties.enable-logging=true # Enable disk logging.
spring.jta.atomikos.properties.force-shutdown-on-vm-exit=false # Specify if a VM shutdown should trigger forced shutdown of the transaction core.
spring.jta.atomikos.properties.log-base-dir= # Directory in which the log files should be stored.
spring.jta.atomikos.properties.log-base-name=tmlog # Transactions log file base name.
spring.jta.atomikos.properties.max-actives=50 # Maximum number of active transactions.
spring.jta.atomikos.properties.max-timeout=300000 # Maximum timeout (in milliseconds) that can be allowed for transactions.
spring.jta.atomikos.properties.output-dir= # Directory in which to store the debug log files.
spring.jta.atomikos.properties.serial-jta-transactions=true # Specify if sub-transactions should be joined when possible.
spring.jta.atomikos.properties.service= # Transaction manager implementation that should be started.
spring.jta.atomikos.properties.threaded-two-phase-commit=true # Use different (and concurrent) threads for two-phase commit on the participating resource
spring.jta.atomikos.properties.transaction-manager-unique-name= # Transaction manager's unique name.

BITRONIX
spring.jta.bitronix.connectionfactory.acquire-increment=1 # Number of connections to create when growing the pool.
spring.jta.bitronix.connectionfactory.acquisition-interval=1 # Time, in seconds, to wait before trying to acquire a connection again after an invalid con
spring.jta.bitronix.connectionfactory.acquisition-timeout=30 # Timeout, in seconds, for acquiring connections from the pool.
spring.jta.bitronix.connectionfactory.allow-local-transactions=true # Whether or not the transaction manager should allow mixing XA and non-XA transactio
spring.jta.bitronix.connectionfactory.apply-transaction-timeout=false # Whether or not the transaction timeout should be set on the XAResource when it is
spring.jta.bitronix.connectionfactory.automatic-enlisting-enabled=true # Whether or not resources should be enlisted and delisted automatically.
spring.jta.bitronix.connectionfactory.cache-producers-consumers=true # Whether or not produces and consumers should be cached.
spring.jta.bitronix.connectionfactory.defer-connection-release=true # Whether or not the provider can run many transactions on the same connection and su
spring.jta.bitronix.connectionfactory.ignore-recovery-failures=false # Whether or not recovery failures should be ignored.
spring.jta.bitronix.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool.
spring.jta.bitronix.connectionfactory.max-pool-size=10 # The maximum size of the pool. 0 denotes no limit.
spring.jta.bitronix.connectionfactory.min-pool-size=0 # The minimum size of the pool.
spring.jta.bitronix.connectionfactory.password= # The password to use to connect to the JMS provider.
spring.jta.bitronix.connectionfactory.share-transaction-connections=false # Whether or not connections in the ACCESSIBLE state can be shared within the
spring.jta.bitronix.connectionfactory.test-connections=true # Whether or not connections should be tested when acquired from the pool.
spring.jta.bitronix.connectionfactory.two-pc-ordering-position=1 # The position that this resource should take during two-phase commit (always first is I
spring.jta.bitronix.connectionfactory.unique-name=jmsConnectionFactory # The unique name used to identify the resource during recovery.
spring.jta.bitronix.connectionfactory.use-tm-join=true Whether or not TMJOIN should be used when starting XAResources.
spring.jta.bitronix.connectionfactory.user= # The user to use to connect to the JMS provider.
spring.jta.bitronix.datasource.acquire-increment=1 # Number of connections to create when growing the pool.
spring.jta.bitronix.datasource.acquisition-interval=1 # Time, in seconds, to wait before trying to acquire a connection again after an invalid connection
spring.jta.bitronix.datasource.acquisition-timeout=30 # Timeout, in seconds, for acquiring connections from the pool.
spring.jta.bitronix.datasource.allow-local-transactions=true # Whether or not the transaction manager should allow mixing XA and non-XA transactions.
spring.jta.bitronix.datasource.apply-transaction-timeout=false # Whether or not the transaction timeout should be set on the XAResource when it is enlist
spring.jta.bitronix.datasource.automatic-enlisting-enabled=true # Whether or not resources should be enlisted and delisted automatically.
spring.jta.bitronix.datasource.cursor-holdability= # The default cursor holdability for connections.
spring.jta.bitronix.datasource.defer-connection-release=true # Whether or not the database can run many transactions on the same connection and supports
spring.jta.bitronix.datasource.enable-jdbc4-connection-test= # Whether or not Connection.isValid() is called when acquiring a connection from the pool.
spring.jta.bitronix.datasource.ignore-recovery-failures=false # Whether or not recovery failures should be ignored.
spring.jta.bitronix.datasource.isolation-level= # The default isolation level for connections.
spring.jta.bitronix.datasource.local-auto-commit= # The default auto-commit mode for local transactions.
spring.jta.bitronix.datasource.login-timeout= # Timeout, in seconds, for establishing a database connection.
spring.jta.bitronix.datasource.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool.
spring.jta.bitronix.datasource.max-pool-size=10 # The maximum size of the pool. 0 denotes no limit.
spring.jta.bitronix.datasource.min-pool-size=0 # The minimum size of the pool.
spring.jta.bitronix.datasource.prepared-statement-cache-size=0 # The target size of the prepared statement cache. 0 disables the cache.
spring.jta.bitronix.datasource.share-transaction-connections=false # Whether or not connections in the ACCESSIBLE state can be shared within the context
spring.jta.bitronix.datasource.test-query= # SQL query or statement used to validate a connection before returning it.
spring.jta.bitronix.datasource.two-pc-ordering-position=1 # The position that this resource should take during two-phase commit (always first is Integer.
spring.jta.bitronix.datasource.unique-name=dataSource # The unique name used to identify the resource during recovery.
spring.jta.bitronix.datasource.use-tm-join=true Whether or not TMJOIN should be used when starting XAResources.
spring.jta.bitronix.properties.allow-multiple-lrc=false # Allow multiple LRC resources to be enlisted into the same transaction.
spring.jta.bitronix.properties.asynchronous2-pc=false # Enable asynchronously execution of two phase commit.
spring.jta.bitronix.properties.background-recovery-interval-seconds=60 # Interval in seconds at which to run the recovery process in the background.
spring.jta.bitronix.properties.current-node-only-recovery=true # Recover only the current node.
spring.jta.bitronix.properties.debug-zero-resource-transaction=false # Log the creation and commit call stacks of transactions executed without a single
spring.jta.bitronix.properties.default-transaction-timeout=60 # Default transaction timeout in seconds.
spring.jta.bitronix.properties.disable-jmx=false # Enable JMX support.
spring.jta.bitronix.properties.exception-analyzer= # Set the fully qualified name of the exception analyzer implementation to use.
spring.jta.bitronix.properties.filter-log-status=false # Enable filtering of logs so that only mandatory logs are written.
spring.jta.bitronix.properties.force-batching-enabled=true # Set if disk forces are batched.
spring.jta.bitronix.properties.forced-write-enabled=true # Set if logs are forced to disk.
spring.jta.bitronix.properties.graceful-shutdown-interval=60 # Maximum amount of seconds the TM will wait for transactions to get done before aborting th
spring.jta.bitronix.properties.jndi-transaction-synchronization-registry-name= # JNDI name of the TransactionSynchronizationRegistry.
spring.jta.bitronix.properties.jndi-user-transaction-name= # JNDI name of the UserTransaction.
spring.jta.bitronix.properties.journal=disk # Name of the journal. Can be 'disk', 'null' or a class name.
spring.jta.bitronix.properties.log-part1-filename=btm1.tlog # Name of the first fragment of the journal.
spring.jta.bitronix.properties.log-part2-filename=btm2.tlog # Name of the second fragment of the journal.
spring.jta.bitronix.properties.max-log-size-in-mb=2 # Maximum size in megabytes of the journal fragments.
spring.jta.bitronix.properties.resource-configuration-filename= # ResourceLoader configuration file name.
spring.jta.bitronix.properties.server-id= # ASCII ID that must uniquely identify this TM instance. Default to the machine's IP address.
spring.jta.bitronix.properties.skip-corrupted-logs=false # Skip corrupted transactions log entries.
spring.jta.bitronix.properties.warn-about-zero-resource-transaction=true # Log a warning for transactions executed without a single enlisted resource.

NARAYANA (NarayanaProperties)
spring.jta.narayana.default-timeout=60 # Transaction timeout in seconds.
spring.jta.narayana.expiry-scanners=com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner # Comma-separated list of expiry scann
spring.jta.narayana.log-dir= # Transaction object store directory.
spring.jta.narayana.one-phase-commit=true # Enable one phase commit optimisation.
spring.jta.narayana.periodic-recovery-period=120 # Interval in which periodic recovery scans are performed in seconds.
spring.jta.narayana.recovery-backoff-period=10 # Back off period between first and second phases of the recovery scan in seconds.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

149 of 180 05/12/2016 20:33

spring.jta.narayana.recovery-db-pass= # Database password to be used by recovery manager.
spring.jta.narayana.recovery-db-user= # Database username to be used by recovery manager.
spring.jta.narayana.recovery-jms-pass= # JMS password to be used by recovery manager.
spring.jta.narayana.recovery-jms-user= # JMS username to be used by recovery manager.
spring.jta.narayana.recovery-modules= # Comma-separated list of recovery modules.
spring.jta.narayana.transaction-manager-id=1 # Unique transaction manager id.
spring.jta.narayana.xa-resource-orphan-filters= # Comma-separated list of orphan filters.

EMBEDDED MONGODB (EmbeddedMongoProperties)
spring.mongodb.embedded.features=SYNC_DELAY # Comma-separated list of features to enable.
spring.mongodb.embedded.storage.databaseDir= # Directory used for data storage.
spring.mongodb.embedded.storage.oplogSize= # Maximum size of the oplog in megabytes.
spring.mongodb.embedded.storage.replSetName= # Name of the replica set.
spring.mongodb.embedded.version=2.6.10 # Version of Mongo to use.

REDIS (RedisProperties)
spring.redis.cluster.max-redirects= # Maximum number of redirects to follow when executing commands across the cluster.
spring.redis.cluster.nodes= # Comma-separated list of "host:port" pairs to bootstrap from.
spring.redis.database=0 # Database index used by the connection factory.
spring.redis.host=localhost # Redis server host.
spring.redis.password= # Login password of the redis server.
spring.redis.pool.max-active=8 # Max number of connections that can be allocated by the pool at a given time. Use a negative value for no limit.
spring.redis.pool.max-idle=8 # Max number of "idle" connections in the pool. Use a negative value to indicate an unlimited number of idle connections.
spring.redis.pool.max-wait=-1 # Maximum amount of time (in milliseconds) a connection allocation should block before throwing an exception when the pool
spring.redis.pool.min-idle=0 # Target for the minimum number of idle connections to maintain in the pool. This setting only has an effect if it is positi
spring.redis.port=6379 # Redis server port.
spring.redis.sentinel.master= # Name of Redis server.
spring.redis.sentinel.nodes= # Comma-separated list of host:port pairs.
spring.redis.timeout=0 # Connection timeout in milliseconds.

--
INTEGRATION PROPERTIES
--

ACTIVEMQ (ActiveMQProperties)
spring.activemq.broker-url= # URL of the ActiveMQ broker. Auto-generated by default. For instance `tcp://localhost:61616`
spring.activemq.in-memory=true # Specify if the default broker URL should be in memory. Ignored if an explicit broker has been specified.
spring.activemq.password= # Login password of the broker.
spring.activemq.user= # Login user of the broker.
spring.activemq.packages.trust-all=false # Trust all packages.
spring.activemq.packages.trusted= # Comma-separated list of specific packages to trust (when not trusting all packages).
spring.activemq.pool.configuration.*= # See PooledConnectionFactory.
spring.activemq.pool.enabled=false # Whether a PooledConnectionFactory should be created instead of a regular ConnectionFactory.
spring.activemq.pool.expiry-timeout=0 # Connection expiration timeout in milliseconds.
spring.activemq.pool.idle-timeout=30000 # Connection idle timeout in milliseconds.
spring.activemq.pool.max-connections=1 # Maximum number of pooled connections.

ARTEMIS (ArtemisProperties)
spring.artemis.embedded.cluster-password= # Cluster password. Randomly generated on startup by default.
spring.artemis.embedded.data-directory= # Journal file directory. Not necessary if persistence is turned off.
spring.artemis.embedded.enabled=true # Enable embedded mode if the Artemis server APIs are available.
spring.artemis.embedded.persistent=false # Enable persistent store.
spring.artemis.embedded.queues= # Comma-separated list of queues to create on startup.
spring.artemis.embedded.server-id= # Server id. By default, an auto-incremented counter is used.
spring.artemis.embedded.topics= # Comma-separated list of topics to create on startup.
spring.artemis.host=localhost # Artemis broker host.
spring.artemis.mode= # Artemis deployment mode, auto-detected by default.
spring.artemis.password= # Login password of the broker.
spring.artemis.port=61616 # Artemis broker port.
spring.artemis.user= # Login user of the broker.

SPRING BATCH (BatchProperties)
spring.batch.initializer.enabled= # Create the required batch tables on startup if necessary. Enabled automatically if no custom table prefix is set or i
spring.batch.job.enabled=true # Execute all Spring Batch jobs in the context on startup.
spring.batch.job.names= # Comma-separated list of job names to execute on startup (For instance `job1,job2`). By default, all Jobs found in the context a
spring.batch.schema=classpath:org/springframework/batch/core/schema-@@platform@@.sql # Path to the SQL file to use to initialize the database schema.
spring.batch.table-prefix= # Table prefix for all the batch meta-data tables.

JMS (JmsProperties)
spring.jms.jndi-name= # Connection factory JNDI name. When set, takes precedence to others connection factory auto-configurations.
spring.jms.listener.acknowledge-mode= # Acknowledge mode of the container. By default, the listener is transacted with automatic acknowledgment.
spring.jms.listener.auto-startup=true # Start the container automatically on startup.
spring.jms.listener.concurrency= # Minimum number of concurrent consumers.
spring.jms.listener.max-concurrency= # Maximum number of concurrent consumers.
spring.jms.pub-sub-domain=false # Specify if the default destination type is topic.
spring.jms.template.default-destination= # Default destination to use on send/receive operations that do not have a destination parameter.
spring.jms.template.delivery-delay= # Delivery delay to use for send calls in milliseconds.
spring.jms.template.delivery-mode= # Delivery mode. Enable QoS when set.
spring.jms.template.priority= # Priority of a message when sending. Enable QoS when set.
spring.jms.template.qos-enabled= # Enable explicit QoS when sending a message.
spring.jms.template.receive-timeout= # Timeout to use for receive calls in milliseconds.
spring.jms.template.time-to-live= # Time-to-live of a message when sending in milliseconds. Enable QoS when set.

APACHE KAFKA (KafkaProperties)
spring.kafka.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connection to the Kafka cluster.
spring.kafka.client-id= # Id to pass to the server when making requests; used for server-side logging.
spring.kafka.consumer.auto-commit-interval= # Frequency in milliseconds that the consumer offsets are auto-committed to Kafka if 'enable.auto.commit' tru
spring.kafka.consumer.auto-offset-reset= # What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the se
spring.kafka.consumer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connection to the Kafka cluster.
spring.kafka.consumer.client-id= # Id to pass to the server when making requests; used for server-side logging.
spring.kafka.consumer.enable-auto-commit= # If true the consumer's offset will be periodically committed in the background.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

150 of 180 05/12/2016 20:33

spring.kafka.consumer.fetch-max-wait= # Maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't su
spring.kafka.consumer.fetch-min-size= # Minimum amount of data the server should return for a fetch request in bytes.
spring.kafka.consumer.group-id= # Unique string that identifies the consumer group this consumer belongs to.
spring.kafka.consumer.heartbeat-interval= # Expected time in milliseconds between heartbeats to the consumer coordinator.
spring.kafka.consumer.key-deserializer= # Deserializer class for keys.
spring.kafka.consumer.value-deserializer= # Deserializer class for values.
spring.kafka.listener.ack-count= # Number of records between offset commits when ackMode is "COUNT" or "COUNT_TIME".
spring.kafka.listener.ack-mode= # Listener AckMode; see the spring-kafka documentation.
spring.kafka.listener.ack-time= # Time in milliseconds between offset commits when ackMode is "TIME" or "COUNT_TIME".
spring.kafka.listener.concurrency= # Number of threads to run in the listener containers.
spring.kafka.listener.poll-timeout= # Timeout in milliseconds to use when polling the consumer.
spring.kafka.producer.acks= # Number of acknowledgments the producer requires the leader to have received before considering a request complete.
spring.kafka.producer.batch-size= # Number of records to batch before sending.
spring.kafka.producer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connection to the Kafka cluster.
spring.kafka.producer.buffer-memory= # Total bytes of memory the producer can use to buffer records waiting to be sent to the server.
spring.kafka.producer.client-id= # Id to pass to the server when making requests; used for server-side logging.
spring.kafka.producer.compression-type= # Compression type for all data generated by the producer.
spring.kafka.producer.key-serializer= # Serializer class for keys.
spring.kafka.producer.retries= # When greater than zero, enables retrying of failed sends.
spring.kafka.producer.value-serializer= # Serializer class for values.
spring.kafka.ssl.key-password= # Password of the private key in the key store file.
spring.kafka.ssl.keystore-location= # Location of the key store file.
spring.kafka.ssl.keystore-password= # Store password for the key store file.
spring.kafka.ssl.truststore-location= # Location of the trust store file.
spring.kafka.ssl.truststore-password= # Store password for the trust store file.
spring.kafka.template.default-topic= # Default topic to which messages will be sent.

RABBIT (RabbitProperties)
spring.rabbitmq.addresses= # Comma-separated list of addresses to which the client should connect.
spring.rabbitmq.cache.channel.checkout-timeout= # Number of milliseconds to wait to obtain a channel if the cache size has been reached.
spring.rabbitmq.cache.channel.size= # Number of channels to retain in the cache.
spring.rabbitmq.cache.connection.mode=CHANNEL # Connection factory cache mode.
spring.rabbitmq.cache.connection.size= # Number of connections to cache.
spring.rabbitmq.connection-timeout= # Connection timeout, in milliseconds; zero for infinite.
spring.rabbitmq.dynamic=true # Create an AmqpAdmin bean.
spring.rabbitmq.host=localhost # RabbitMQ host.
spring.rabbitmq.listener.acknowledge-mode= # Acknowledge mode of container.
spring.rabbitmq.listener.auto-startup=true # Start the container automatically on startup.
spring.rabbitmq.listener.concurrency= # Minimum number of consumers.
spring.rabbitmq.listener.default-requeue-rejected= # Whether or not to requeue delivery failures; default `true`.
spring.rabbitmq.listener.idle-event-interval= # How often idle container events should be published in milliseconds.
spring.rabbitmq.listener.max-concurrency= # Maximum number of consumers.
spring.rabbitmq.listener.prefetch= # Number of messages to be handled in a single request. It should be greater than or equal to the transaction size (if
spring.rabbitmq.listener.retry.enabled=false # Whether or not publishing retries are enabled.
spring.rabbitmq.listener.retry.initial-interval=1000 # Interval between the first and second attempt to deliver a message.
spring.rabbitmq.listener.retry.max-attempts=3 # Maximum number of attempts to deliver a message.
spring.rabbitmq.listener.retry.max-interval=10000 # Maximum interval between attempts.
spring.rabbitmq.listener.retry.multiplier=1.0 # A multiplier to apply to the previous delivery retry interval.
spring.rabbitmq.listener.retry.stateless=true # Whether or not retry is stateless or stateful.
spring.rabbitmq.listener.transaction-size= # Number of messages to be processed in a transaction. For best results it should be less than or equal to the
spring.rabbitmq.password= # Login to authenticate against the broker.
spring.rabbitmq.port=5672 # RabbitMQ port.
spring.rabbitmq.publisher-confirms=false # Enable publisher confirms.
spring.rabbitmq.publisher-returns=false # Enable publisher returns.
spring.rabbitmq.requested-heartbeat= # Requested heartbeat timeout, in seconds; zero for none.
spring.rabbitmq.ssl.enabled=false # Enable SSL support.
spring.rabbitmq.ssl.key-store= # Path to the key store that holds the SSL certificate.
spring.rabbitmq.ssl.key-store-password= # Password used to access the key store.
spring.rabbitmq.ssl.trust-store= # Trust store that holds SSL certificates.
spring.rabbitmq.ssl.trust-store-password= # Password used to access the trust store.
spring.rabbitmq.ssl.algorithm= # SSL algorithm to use. By default configure by the rabbit client library.
spring.rabbitmq.template.mandatory=false # Enable mandatory messages.
spring.rabbitmq.template.receive-timeout=0 # Timeout for `receive()` methods.
spring.rabbitmq.template.reply-timeout=5000 # Timeout for `sendAndReceive()` methods.
spring.rabbitmq.template.retry.enabled=false # Set to true to enable retries in the `RabbitTemplate`.
spring.rabbitmq.template.retry.initial-interval=1000 # Interval between the first and second attempt to publish a message.
spring.rabbitmq.template.retry.max-attempts=3 # Maximum number of attempts to publish a message.
spring.rabbitmq.template.retry.max-interval=10000 # Maximum number of attempts to publish a message.
spring.rabbitmq.template.retry.multiplier=1.0 # A multiplier to apply to the previous publishing retry interval.
spring.rabbitmq.username= # Login user to authenticate to the broker.
spring.rabbitmq.virtual-host= # Virtual host to use when connecting to the broker.

--
ACTUATOR PROPERTIES
--

ENDPOINTS (AbstractEndpoint subclasses)
endpoints.enabled=true # Enable endpoints.
endpoints.sensitive= # Default endpoint sensitive setting.
endpoints.actuator.enabled=true # Enable the endpoint.
endpoints.actuator.path= # Endpoint URL path.
endpoints.actuator.sensitive=false # Enable security on the endpoint.
endpoints.autoconfig.enabled= # Enable the endpoint.
endpoints.autoconfig.id= # Endpoint identifier.
endpoints.autoconfig.path= # Endpoint path.
endpoints.autoconfig.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.beans.enabled= # Enable the endpoint.
endpoints.beans.id= # Endpoint identifier.
endpoints.beans.path= # Endpoint path.
endpoints.beans.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.configprops.enabled= # Enable the endpoint.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

151 of 180 05/12/2016 20:33

endpoints.configprops.id= # Endpoint identifier.
endpoints.configprops.keys-to-sanitize=password,secret,key,token,.*credentials.*,vcap_services # Keys that should be sanitized. Keys can be simple string
endpoints.configprops.path= # Endpoint path.
endpoints.configprops.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.docs.curies.enabled=false # Enable the curie generation.
endpoints.docs.enabled=true # Enable actuator docs endpoint.
endpoints.docs.path=/docs #
endpoints.docs.sensitive=false #
endpoints.dump.enabled= # Enable the endpoint.
endpoints.dump.id= # Endpoint identifier.
endpoints.dump.path= # Endpoint path.
endpoints.dump.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.env.enabled= # Enable the endpoint.
endpoints.env.id= # Endpoint identifier.
endpoints.env.keys-to-sanitize=password,secret,key,token,.*credentials.*,vcap_services # Keys that should be sanitized. Keys can be simple strings that t
endpoints.env.path= # Endpoint path.
endpoints.env.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.flyway.enabled= # Enable the endpoint.
endpoints.flyway.id= # Endpoint identifier.
endpoints.flyway.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.health.enabled= # Enable the endpoint.
endpoints.health.id= # Endpoint identifier.
endpoints.health.mapping.*= # Mapping of health statuses to HttpStatus codes. By default, registered health statuses map to sensible defaults (i.e. UP ma
endpoints.health.path= # Endpoint path.
endpoints.health.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.health.time-to-live=1000 # Time to live for cached result, in milliseconds.
endpoints.heapdump.enabled= # Enable the endpoint.
endpoints.heapdump.path= # Endpoint path.
endpoints.heapdump.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.hypermedia.enabled=false # Enable hypermedia support for endpoints.
endpoints.info.enabled= # Enable the endpoint.
endpoints.info.id= # Endpoint identifier.
endpoints.info.path= # Endpoint path.
endpoints.info.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.jolokia.enabled=true # Enable Jolokia endpoint.
endpoints.jolokia.path=/jolokia # Endpoint URL path.
endpoints.jolokia.sensitive=true # Enable security on the endpoint.
endpoints.liquibase.enabled= # Enable the endpoint.
endpoints.liquibase.id= # Endpoint identifier.
endpoints.liquibase.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.logfile.enabled=true # Enable the endpoint.
endpoints.logfile.external-file= # External Logfile to be accessed.
endpoints.logfile.path=/logfile # Endpoint URL path.
endpoints.logfile.sensitive=true # Enable security on the endpoint.
endpoints.mappings.enabled= # Enable the endpoint.
endpoints.mappings.id= # Endpoint identifier.
endpoints.mappings.path= # Endpoint path.
endpoints.mappings.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.metrics.enabled= # Enable the endpoint.
endpoints.metrics.filter.enabled=true # Enable the metrics servlet filter.
endpoints.metrics.filter.gauge-submissions=merged # Http filter gauge submissions (merged, per-http-method)
endpoints.metrics.filter.counter-submissions=merged # Http filter counter submissions (merged, per-http-method)
endpoints.metrics.id= # Endpoint identifier.
endpoints.metrics.path= # Endpoint path.
endpoints.metrics.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.shutdown.enabled= # Enable the endpoint.
endpoints.shutdown.id= # Endpoint identifier.
endpoints.shutdown.path= # Endpoint path.
endpoints.shutdown.sensitive= # Mark if the endpoint exposes sensitive information.
endpoints.trace.enabled= # Enable the endpoint.
endpoints.trace.id= # Endpoint identifier.
endpoints.trace.path= # Endpoint path.
endpoints.trace.sensitive= # Mark if the endpoint exposes sensitive information.

ENDPOINTS CORS CONFIGURATION (EndpointCorsProperties)
endpoints.cors.allow-credentials= # Set whether credentials are supported. When not set, credentials are not supported.
endpoints.cors.allowed-headers= # Comma-separated list of headers to allow in a request. '*' allows all headers.
endpoints.cors.allowed-methods=GET # Comma-separated list of methods to allow. '*' allows all methods.
endpoints.cors.allowed-origins= # Comma-separated list of origins to allow. '*' allows all origins. When not set, CORS support is disabled.
endpoints.cors.exposed-headers= # Comma-separated list of headers to include in a response.
endpoints.cors.max-age=1800 # How long, in seconds, the response from a pre-flight request can be cached by clients.

JMX ENDPOINT (EndpointMBeanExportProperties)
endpoints.jmx.domain= # JMX domain name. Initialized with the value of 'spring.jmx.default-domain' if set.
endpoints.jmx.enabled=true # Enable JMX export of all endpoints.
endpoints.jmx.static-names= # Additional static properties to append to all ObjectNames of MBeans representing Endpoints.
endpoints.jmx.unique-names=false # Ensure that ObjectNames are modified in case of conflict.

JOLOKIA (JolokiaProperties)
jolokia.config.*= # See Jolokia manual

MANAGEMENT HTTP SERVER (ManagementServerProperties)
management.add-application-context-header=true # Add the "X-Application-Context" HTTP header in each response.
management.address= # Network address that the management endpoints should bind to.
management.context-path= # Management endpoint context-path. For instance `/actuator`
management.port= # Management endpoint HTTP port. Uses the same port as the application by default. Configure a different port to use management-specific
management.security.enabled=true # Enable security.
management.security.roles=ADMIN # Comma-separated list of roles that can access the management endpoint.
management.security.sessions=stateless # Session creating policy to use (always, never, if_required, stateless).
management.ssl.ciphers= # Supported SSL ciphers. Requires a custom management.port.
management.ssl.client-auth= # Whether client authentication is wanted ("want") or needed ("need"). Requires a trust store. Requires a custom management.p
management.ssl.enabled= # Enable SSL support. Requires a custom management.port.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

152 of 180 05/12/2016 20:33

management.ssl.enabled-protocols= # Enabled SSL protocols. Requires a custom management.port.
management.ssl.key-alias= # Alias that identifies the key in the key store. Requires a custom management.port.
management.ssl.key-password= # Password used to access the key in the key store. Requires a custom management.port.
management.ssl.key-store= # Path to the key store that holds the SSL certificate (typically a jks file). Requires a custom management.port.
management.ssl.key-store-password= # Password used to access the key store. Requires a custom management.port.
management.ssl.key-store-provider= # Provider for the key store. Requires a custom management.port.
management.ssl.key-store-type= # Type of the key store. Requires a custom management.port.
management.ssl.protocol=TLS # SSL protocol to use. Requires a custom management.port.
management.ssl.trust-store= # Trust store that holds SSL certificates. Requires a custom management.port.
management.ssl.trust-store-password= # Password used to access the trust store. Requires a custom management.port.
management.ssl.trust-store-provider= # Provider for the trust store. Requires a custom management.port.
management.ssl.trust-store-type= # Type of the trust store. Requires a custom management.port.

HEALTH INDICATORS (previously health.*)
management.health.db.enabled=true # Enable database health check.
management.health.defaults.enabled=true # Enable default health indicators.
management.health.diskspace.enabled=true # Enable disk space health check.
management.health.diskspace.path= # Path used to compute the available disk space.
management.health.diskspace.threshold=0 # Minimum disk space that should be available, in bytes.
management.health.elasticsearch.enabled=true # Enable elasticsearch health check.
management.health.elasticsearch.indices= # Comma-separated index names.
management.health.elasticsearch.response-timeout=100 # The time, in milliseconds, to wait for a response from the cluster.
management.health.jms.enabled=true # Enable JMS health check.
management.health.mail.enabled=true # Enable Mail health check.
management.health.mongo.enabled=true # Enable MongoDB health check.
management.health.rabbit.enabled=true # Enable RabbitMQ health check.
management.health.redis.enabled=true # Enable Redis health check.
management.health.solr.enabled=true # Enable Solr health check.
management.health.status.order=DOWN, OUT_OF_SERVICE, UNKNOWN, UP # Comma-separated list of health statuses in order of severity.

INFO CONTRIBUTORS (InfoContributorProperties)
management.info.build.enabled=true # Enable build info.
management.info.defaults.enabled=true # Enable default info contributors.
management.info.env.enabled=true # Enable environment info.
management.info.git.enabled=true # Enable git info.
management.info.git.mode=simple # Mode to use to expose git information.

TRACING (TraceProperties)
management.trace.include=request-headers,response-headers,cookies,errors # Items to be included in the trace.

METRICS EXPORT (MetricExportProperties)
spring.metrics.export.aggregate.key-pattern= # Pattern that tells the aggregator what to do with the keys from the source repository.
spring.metrics.export.aggregate.prefix= # Prefix for global repository if active.
spring.metrics.export.delay-millis=5000 # Delay in milliseconds between export ticks. Metrics are exported to external sources on a schedule with this de
spring.metrics.export.enabled=true # Flag to enable metric export (assuming a MetricWriter is available).
spring.metrics.export.excludes= # List of patterns for metric names to exclude. Applied after the includes.
spring.metrics.export.includes= # List of patterns for metric names to include.
spring.metrics.export.redis.key=keys.spring.metrics # Key for redis repository export (if active).
spring.metrics.export.redis.prefix=spring.metrics # Prefix for redis repository if active.
spring.metrics.export.send-latest= # Flag to switch off any available optimizations based on not exporting unchanged metric values.
spring.metrics.export.statsd.host= # Host of a statsd server to receive exported metrics.
spring.metrics.export.statsd.port=8125 # Port of a statsd server to receive exported metrics.
spring.metrics.export.statsd.prefix= # Prefix for statsd exported metrics.
spring.metrics.export.triggers.*= # Specific trigger properties per MetricWriter bean name.

--
DEVTOOLS PROPERTIES
--

DEVTOOLS (DevToolsProperties)
spring.devtools.livereload.enabled=true # Enable a livereload.com compatible server.
spring.devtools.livereload.port=35729 # Server port.
spring.devtools.restart.additional-exclude= # Additional patterns that should be excluded from triggering a full restart.
spring.devtools.restart.additional-paths= # Additional paths to watch for changes.
spring.devtools.restart.enabled=true # Enable automatic restart.
spring.devtools.restart.exclude=META-INF/maven/**,META-INF/resources/**,resources/**,static/**,public/**,templates/**,**/*Test.class,**/*Tests.class,git.
spring.devtools.restart.poll-interval=1000 # Amount of time (in milliseconds) to wait between polling for classpath changes.
spring.devtools.restart.quiet-period=400 # Amount of quiet time (in milliseconds) required without any classpath changes before a restart is triggered.
spring.devtools.restart.trigger-file= # Name of a specific file that when changed will trigger the restart check. If not specified any classpath file cha

REMOTE DEVTOOLS (RemoteDevToolsProperties)
spring.devtools.remote.context-path=/.~~spring-boot!~ # Context path used to handle the remote connection.
spring.devtools.remote.debug.enabled=true # Enable remote debug support.
spring.devtools.remote.debug.local-port=8000 # Local remote debug server port.
spring.devtools.remote.proxy.host= # The host of the proxy to use to connect to the remote application.
spring.devtools.remote.proxy.port= # The port of the proxy to use to connect to the remote application.
spring.devtools.remote.restart.enabled=true # Enable remote restart.
spring.devtools.remote.secret= # A shared secret required to establish a connection (required to enable remote support).
spring.devtools.remote.secret-header-name=X-AUTH-TOKEN # HTTP header used to transfer the shared secret.

Appendix B. Configuration meta-data
Spring Boot jars are shipped with meta-data files that provide details of all supported configuration properties. The files are designed to allow IDE developers to offer
contextual help and “code completion” as users are working with application.properties or application.yml files.

The majority of the meta-data file is generated automatically at compile time by processing all items annotated with @ConfigurationProperties . However, it is
possible to write part of the meta-data manually for corner cases or more advanced use cases.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

153 of 180 05/12/2016 20:33

B.1 Meta-data format
Configuration meta-data files are located inside jars under META-INF/spring-configuration-metadata.json They use a simple JSON format with items
categorized under either “groups” or “properties” and additional values hint categorized under "hints":

{"groups": [
{

"name": "server",
"type": "org.springframework.boot.autoconfigure.web.ServerProperties",
"sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"

},
{

"name": "spring.jpa.hibernate",
"type": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties$Hibernate",
"sourceType": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties",
"sourceMethod": "getHibernate()"

}
 ...
],"properties": [

{
"name": "server.port",
"type": "java.lang.Integer",
"sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"

},
{

"name": "server.servlet-path",
"type": "java.lang.String",
"sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties",
"defaultValue": "/"

},
{

"name": "spring.jpa.hibernate.ddl-auto",
"type": "java.lang.String",
"description": "DDL mode. This is actually a shortcut for the \"hibernate.hbm2ddl.auto\" property.",
"sourceType": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties$Hibernate"

}
 ...
],"hints": [

{
"name": "spring.jpa.hibernate.ddl-auto",
"values": [

{
"value": "none",
"description": "Disable DDL handling."

},
{

"value": "validate",
"description": "Validate the schema, make no changes to the database."

},
{

"value": "update",
"description": "Update the schema if necessary."

},
{

"value": "create",
"description": "Create the schema and destroy previous data."

},
{

"value": "create-drop",
"description": "Create and then destroy the schema at the end of the session."

}
]

}
]}

Each “property” is a configuration item that the user specifies with a given value. For example server.port and server.servlet-path might be specified in
application.properties as follows:

server.port=9090
server.servlet-path=/home

The “groups” are higher level items that don’t themselves specify a value, but instead provide a contextual grouping for properties. For example the server.port and
server.servlet-path properties are part of the server group.

It is not required that every “property” has a “group”, some properties might just exist in their own right.

Finally, “hints” are additional information used to assist the user in configuring a given property. When configuring the spring.jpa.hibernate.ddl-auto property, a
tool can use it to offer some auto-completion help for the none , validate , update , create and create-drop values.

B.1.1 Group Attributes

The JSON object contained in the groups array can contain the following attributes:

Name Type Purpose

name String The full name of the group. This attribute is mandatory.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

154 of 180 05/12/2016 20:33

B.1.2 Property Attributes

The JSON object contained in the properties array can contain the following attributes:

Name Type Purpose

name String The full name of the property. Names are in lowercase dashed form (e.g. server.servlet-path). This attribute is
mandatory.

type String The full signature of the data type of the property. For example, java.lang.String but also a full generic type such as
java.util.Map<java.util.String,acme.MyEnum> . This attribute can be used to guide the user as to the types of
values that they can enter. For consistency, the type of a primitive is specified using its wrapper counterpart, i.e. boolean
becomes java.lang.Boolean . Note that this class may be a complex type that gets converted from a String as values are
bound. May be omitted if the type is not known.

description String A short description of the group that can be displayed to users. May be omitted if no description is available. It is recommended
that descriptions are a short paragraphs, with the first line providing a concise summary. The last line in the description should
end with a period (.).

sourceType String The class name of the source that contributed this property. For example, if the property was from a class annotated with
@ConfigurationProperties this attribute would contain the fully qualified name of that class. May be omitted if the source
type is not known.

defaultValue Object The default value which will be used if the property is not specified. Can also be an array of value(s) if the type of the property is
an array. May be omitted if the default value is not known.

deprecation Deprecation Specify if the property is deprecated. May be omitted if the field is not deprecated or if that information is not known. See below
for more details.

The JSON object contained in the deprecation attribute of each properties element can contain the following attributes:

Name Type Purpose

reason String A short description of the reason why the property was deprecated. May be omitted if no reason is available. It is recommended that
descriptions are a short paragraphs, with the first line providing a concise summary. The last line in the description should end with a
period (.).

replacement String The full name of the property that is replacing this deprecated property. May be omitted if there is no replacement for this property.

Prior to Spring Boot 1.3, a single deprecated boolean attribute can be used instead of the deprecation element. This is still supported in a
deprecated fashion and should no longer be used. If no reason and replacement are available, an empty deprecation object should be set.

Deprecation can also be specified declaratively in code by adding the @DeprecatedConfigurationProperty annotation to the getter exposing the deprecated
property. For instance, let’s assume the app.foo.target property was confusing and was renamed to app.foo.name

@ConfigurationProperties("app.foo")
public class FooProperties {

private String name;

public String getName() { ... }

public void setName(String name) { ... }

@DeprecatedConfigurationProperty(replacement = "app.foo.name")
@Deprecated
public String getTarget() {

return getName();
 }

@Deprecated
public void setTarget(String target) {

 setName(target);
 }
}

The code above makes sure that the deprecated property still works (delegating to the name property behind the scenes). Once the getTarget and setTarget
methods can be removed from your public API, the automatic deprecation hint in the meta-data will go away as well.

B.1.3 Hint Attributes

The JSON object contained in the hints array can contain the following attributes:

Name Type Purpose

name String The full name of the property that this hint refers to. Names are in lowercase dashed form (e.g. server.servlet-path). If the
property refers to a map (e.g. system.contexts) the hint either applies to the keys of the map (system.context.keys) or

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

155 of 180 05/12/2016 20:33

Name Type Purpose

the values (system.context.values). This attribute is mandatory.

values ValueHint[] A list of valid values as defined by the ValueHint object (see below). Each entry defines the value and may have a description

providers ValueProvider[] A list of providers as defined by the ValueProvider object (see below). Each entry defines the name of the provider and its
parameters, if any.

The JSON object contained in the values attribute of each hint element can contain the following attributes:

Name Type Purpose

value Object A valid value for the element to which the hint refers to. Can also be an array of value(s) if the type of the property is an array. This
attribute is mandatory.

description String A short description of the value that can be displayed to users. May be omitted if no description is available. It is recommended that
descriptions are a short paragraphs, with the first line providing a concise summary. The last line in the description should end with a
period (.).

The JSON object contained in the providers attribute of each hint element can contain the following attributes:

Name Type Purpose

name String The name of the provider to use to offer additional content assistance for the element to which the hint refers to.

parameters JSON object Any additional parameter that the provider supports (check the documentation of the provider for more details).

B.1.4 Repeated meta-data items

It is perfectly acceptable for “property” and “group” objects with the same name to appear multiple times within a meta-data file. For example, you could bind two separate
classes to the same prefix, with each potentially offering overlap of property names. While this is not supposed to be a frequent scenario, consumers of meta-data should
take care to ensure that they support such scenarios.

B.2 Providing manual hints
To improve the user experience and further assist the user in configuring a given property, you can provide additional meta-data that:

Describes the list of potential values for a property.1.
Associates a provider to attach a well-defined semantic to a property so that a tool can discover the list of potential values based on the project’s context.2.

B.2.1 Value hint

The name attribute of each hint refers to the name of a property. In the initial example above, we provide 5 values for the spring.jpa.hibernate.ddl-auto
property: none , validate , update , create and create-drop . Each value may have a description as well.

If your property is of type Map , you can provide hints for both the keys and the values (but not for the map itself). The special .keys and .values suffixes must be
used to refer to the keys and the values respectively.

Let’s assume a foo.contexts that maps magic String values to an integer:

@ConfigurationProperties("foo")
public class FooProperties {

private Map<String,Integer> contexts;
// getters and setters

}

The magic values are foo and bar for instance. In order to offer additional content assistance for the keys, you could add the following to the manual meta-data of the
module:

{"hints": [
{

"name": "foo.contexts.keys",
"values": [

{
"value": "foo"

},
{

"value": "bar"
}

]
}

]}

Of course, you should have an Enum for those two values instead. This is by far the most effective approach to auto-completion if your IDE supports it.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

156 of 180 05/12/2016 20:33

B.2.2 Value provider

Providers are a powerful way of attaching semantics to a property. We define in the section below the official providers that you can use for your own hints. Bare in mind
however that your favorite IDE may implement some of these or none of them. It could eventually provide its own as well.

As this is a new feature, IDE vendors will have to catch up with this new feature.

The table below summarizes the list of supported providers:

Name Description

any Permit any additional value to be provided.

class-reference Auto-complete the classes available in the project. Usually constrained by a base class that is specified via the target parameter.

handle-as Handle the property as if it was defined by the type defined via the mandatory target parameter.

logger-name Auto-complete valid logger names. Typically, package and class names available in the current project can be auto-completed.

spring-bean-reference Auto-complete the available bean names in the current project. Usually constrained by a base class that is specified via the
target parameter.

spring-profile-name Auto-complete the available Spring profile names in the project.

No more than one provider can be active for a given property but you can specify several providers if they can all manage the property in some ways. Make
sure to place the most powerful provider first as the IDE must use the first one in the JSON section it can handle. If no provider for a given property is
supported, no special content assistance is provided either.

Any

The any provider permits any additional values to be provided. Regular value validation based on the property type should be applied if this is supported.

This provider will be typically used if you have a list of values and any extra values are still to be considered as valid.

The example below offers on and off as auto-completion values for system.state ; any other value is also allowed:

{"hints": [
{

"name": "system.state",
"values": [

{
"value": "on"

},
{

"value": "off"
}

],
"providers": [

{
"name": "any"

}
]

}
]}

Class reference

The class-reference provider auto-completes classes available in the project. This provider supports these parameters:

Parameter Type Default
value

Description

target String

(Class)
none The fully qualified name of the class that should be assignable to the chosen value. Typically used to filter out non

candidate classes. Note that this information can be provided by the type itself by exposing a class with the
appropriate upper bound.

concrete boolean true Specify if only concrete classes are to be considered as valid candidates.

The meta-data snippet below corresponds to the standard server.jsp-servlet.class-name property that defines the JspServlet class name to use:

{"hints": [
{

"name": "server.jsp-servlet.class-name",
"providers": [

{
"name": "class-reference",
"parameters": {

"target": "javax.servlet.http.HttpServlet"
}

}

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

157 of 180 05/12/2016 20:33

]
}

]}

Handle As

The handle-as provider allows you to substitute the type of the property to a more high-level type. This typically happens when the property has a java.lang.String
type because you don’t want your configuration classes to rely on classes that may not be on the classpath. This provider supports these parameters:

Parameter Type Default value Description

target String (Class) none The fully qualified name of the type to consider for the property. This parameter is mandatory.

The following types can be used:

Any java.lang.Enum that lists the possible values for the property (By all means, try to define the property with the Enum type instead as no further hint should
be required for the IDE to auto-complete the values).
java.nio.charset.Charset : auto-completion of charset/encoding values (e.g. UTF-8)
java.util.Locale : auto-completion of locales (e.g. en_US)
org.springframework.util.MimeType : auto-completion of content type values (e.g. text/plain)
org.springframework.core.io.Resource : auto-completion of Spring’s Resource abstraction to refer to a file on the filesystem or on the classpath. (e.g.
classpath:/foo.properties)

If multiple values can be provided, use a Collection or Array type to teach the IDE about it.

The meta-data snippet below corresponds to the standard liquibase.change-log property that defines the path to the changelog to use. It is actually used internally
as a org.springframework.core.io.Resource but cannot be exposed as such as we need to keep the original String value to pass it to the Liquibase API.

{"hints": [
{

"name": "liquibase.change-log",
"providers": [

{
"name": "handle-as",
"parameters": {

"target": "org.springframework.core.io.Resource"
}

}
]

}
]}

Logger name

The logger-name provider auto-completes valid logger names. Typically, package and class names available in the current project can be auto-completed. Specific
frameworks may have extra magic logger names that could be supported as well.

Since a logger name can be any arbitrary name, really, this provider should allow any value but could highlight valid packages and class names that are not available in
the project’s classpath.

The meta-data snippet below corresponds to the standard logging.level property, keys are logger names and values correspond to the standard log levels or any
custom level:

{"hints": [
{

"name": "logging.level.keys",
"values": [

{
"value": "root",
"description": "Root logger used to assign the default logging level."

}
],

"providers": [
{

"name": "logger-name"
}

]
},
{

"name": "logging.level.values",
"values": [

{
"value": "trace"

},
{

"value": "debug"
},
{

"value": "info"
},
{

"value": "warn"
},
{

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

158 of 180 05/12/2016 20:33

"value": "error"
},
{

"value": "fatal"
},
{

"value": "off"
}

],
"providers": [

{
"name": "any"

}
]

}
]}

Spring bean reference

The spring-bean-reference provider auto-completes the beans that are defined in the configuration of the current project. This provider supports these parameters:

Parameter Type Default
value

Description

target String

(Class)
none The fully qualified name of the bean class that should be assignable to the candidate. Typically used to filter out

non candidate beans.

The meta-data snippet below corresponds to the standard spring.jmx.server property that defines the name of the MBeanServer bean to use:

{"hints": [
{

"name": "spring.jmx.server",
"providers": [

{
"name": "spring-bean-reference",
"parameters": {

"target": "javax.management.MBeanServer"
}

}
]

}
]}

The binder is not aware of the meta-data so if you provide that hint, you will still need to transform the bean name into an actual Bean reference using the
ApplicationContext .

Spring profile name

The spring-profile-name provider auto-completes the Spring profiles that are defined in the configuration of the current project.

The meta-data snippet below corresponds to the standard spring.profiles.active property that defines the name of the Spring profile(s) to enable:

{"hints": [
{

"name": "spring.profiles.active",
"providers": [

{
"name": "spring-profile-name"

}
]

}
]}

B.3 Generating your own meta-data using the annotation processor
You can easily generate your own configuration meta-data file from items annotated with @ConfigurationProperties by using the
spring-boot-configuration-processor jar. The jar includes a Java annotation processor which is invoked as your project is compiled. To use the processor,
simply include spring-boot-configuration-processor as an optional dependency, for example with Maven you would add:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>

</dependency>

With Gradle, you can use the propdeps-plugin and specify:

dependencies {
optional "org.springframework.boot:spring-boot-configuration-processor"

}

compileJava.dependsOn(processResources)

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

159 of 180 05/12/2016 20:33

You need to add compileJava.dependsOn(processResources) to your build to ensure that resources are processed before code is compiled.
Without this directive any additional-spring-configuration-metadata.json files will not be processed.

The processor will pick up both classes and methods that are annotated with @ConfigurationProperties . The Javadoc for field values within configuration classes
will be used to populate the description attribute.

You should only use simple text with @ConfigurationProperties field Javadoc since they are not processed before being added to the JSON.

Properties are discovered via the presence of standard getters and setters with special handling for collection types (that will be detected even if only a getter is present).
The annotation processor also supports the use of the @Data , @Getter and @Setter lombok annotations.

If you are using AspectJ in your project, you need to make sure that the annotation processor only runs once. There are several ways to do this: with Maven,
you can configure the maven-apt-plugin explicitly and add the dependency to the annotation processor only there. You could also let the AspectJ
plugin run all the processing and disable annotation processing in the maven-compiler-plugin configuration:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<proc>none</proc>
</configuration>

</plugin>

B.3.1 Nested properties

The annotation processor will automatically consider inner classes as nested properties. For example, the following class:

@ConfigurationProperties(prefix="server")
public class ServerProperties {

private String name;

private Host host;

// ... getter and setters

private static class Host {

private String ip;

private int port;

// ... getter and setters

 }

}

Will produce meta-data information for server.name , server.host.ip and server.host.port properties. You can use the
@NestedConfigurationProperty annotation on a field to indicate that a regular (non-inner) class should be treated as if it were nested.

B.3.2 Adding additional meta-data

Spring Boot’s configuration file handling is quite flexible; and it is often the case that properties may exist that are not bound to a @ConfigurationProperties bean.
You may also need to tune some attributes of an existing key. To support such cases and allow you to provide custom "hints", the annotation processor will automatically
merge items from META-INF/additional-spring-configuration-metadata.json into the main meta-data file.

If you refer to a property that has been detected automatically, the description, default value and deprecation information are overridden if specified. If the manual property
declaration is not identified in the current module, it is added as a brand new property.

The format of the additional-spring-configuration-metadata.json file is exactly the same as the regular spring-configuration-metadata.json .
The additional properties file is optional, if you don’t have any additional properties, simply don’t add it.

Appendix C. Auto-configuration classes
Here is a list of all auto-configuration classes provided by Spring Boot with links to documentation and source code. Remember to also look at the autoconfig report in
your application for more details of which features are switched on. (start the app with --debug or -Ddebug , or in an Actuator application use the autoconfig
endpoint).

C.1 From the “spring-boot-autoconfigure” module
The following auto-configuration classes are from the spring-boot-autoconfigure module:

Configuration Class Links

ActiveMQAutoConfiguration javadoc

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

160 of 180 05/12/2016 20:33

Configuration Class Links

AopAutoConfiguration javadoc

ArtemisAutoConfiguration javadoc

BatchAutoConfiguration javadoc

CacheAutoConfiguration javadoc

CassandraAutoConfiguration javadoc

CassandraDataAutoConfiguration javadoc

CassandraRepositoriesAutoConfiguration javadoc

CloudAutoConfiguration javadoc

ConfigurationPropertiesAutoConfiguration javadoc

CouchbaseAutoConfiguration javadoc

CouchbaseDataAutoConfiguration javadoc

CouchbaseRepositoriesAutoConfiguration javadoc

DataSourceAutoConfiguration javadoc

DataSourceTransactionManagerAutoConfiguration javadoc

DeviceDelegatingViewResolverAutoConfiguration javadoc

DeviceResolverAutoConfiguration javadoc

DispatcherServletAutoConfiguration javadoc

ElasticsearchAutoConfiguration javadoc

ElasticsearchDataAutoConfiguration javadoc

ElasticsearchRepositoriesAutoConfiguration javadoc

EmbeddedMongoAutoConfiguration javadoc

EmbeddedServletContainerAutoConfiguration javadoc

ErrorMvcAutoConfiguration javadoc

FacebookAutoConfiguration javadoc

FallbackWebSecurityAutoConfiguration javadoc

FlywayAutoConfiguration javadoc

FreeMarkerAutoConfiguration javadoc

GroovyTemplateAutoConfiguration javadoc

GsonAutoConfiguration javadoc

H2ConsoleAutoConfiguration javadoc

HazelcastAutoConfiguration javadoc

HazelcastJpaDependencyAutoConfiguration javadoc

HibernateJpaAutoConfiguration javadoc

HttpEncodingAutoConfiguration javadoc

HttpMessageConvertersAutoConfiguration javadoc

HypermediaAutoConfiguration javadoc

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

161 of 180 05/12/2016 20:33

Configuration Class Links

IntegrationAutoConfiguration javadoc

JacksonAutoConfiguration javadoc

JdbcTemplateAutoConfiguration javadoc

JerseyAutoConfiguration javadoc

JestAutoConfiguration javadoc

JmsAutoConfiguration javadoc

JmxAutoConfiguration javadoc

JndiConnectionFactoryAutoConfiguration javadoc

JndiDataSourceAutoConfiguration javadoc

JooqAutoConfiguration javadoc

JpaRepositoriesAutoConfiguration javadoc

JtaAutoConfiguration javadoc

KafkaAutoConfiguration javadoc

LinkedInAutoConfiguration javadoc

LiquibaseAutoConfiguration javadoc

MailSenderAutoConfiguration javadoc

MailSenderValidatorAutoConfiguration javadoc

MessageSourceAutoConfiguration javadoc

MongoAutoConfiguration javadoc

MongoDataAutoConfiguration javadoc

MongoRepositoriesAutoConfiguration javadoc

MultipartAutoConfiguration javadoc

MustacheAutoConfiguration javadoc

Neo4jDataAutoConfiguration javadoc

Neo4jRepositoriesAutoConfiguration javadoc

OAuth2AutoConfiguration javadoc

PersistenceExceptionTranslationAutoConfiguration javadoc

ProjectInfoAutoConfiguration javadoc

PropertyPlaceholderAutoConfiguration javadoc

RabbitAutoConfiguration javadoc

RedisAutoConfiguration javadoc

RedisRepositoriesAutoConfiguration javadoc

RepositoryRestMvcAutoConfiguration javadoc

SecurityAutoConfiguration javadoc

SecurityFilterAutoConfiguration javadoc

SendGridAutoConfiguration javadoc

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

162 of 180 05/12/2016 20:33

Configuration Class Links

ServerPropertiesAutoConfiguration javadoc

SessionAutoConfiguration javadoc

SitePreferenceAutoConfiguration javadoc

SocialWebAutoConfiguration javadoc

SolrAutoConfiguration javadoc

SolrRepositoriesAutoConfiguration javadoc

SpringApplicationAdminJmxAutoConfiguration javadoc

SpringDataWebAutoConfiguration javadoc

ThymeleafAutoConfiguration javadoc

TransactionAutoConfiguration javadoc

TwitterAutoConfiguration javadoc

ValidationAutoConfiguration javadoc

WebClientAutoConfiguration javadoc

WebMvcAutoConfiguration javadoc

WebServicesAutoConfiguration javadoc

WebSocketAutoConfiguration javadoc

WebSocketMessagingAutoConfiguration javadoc

XADataSourceAutoConfiguration javadoc

C.2 From the “spring-boot-actuator” module
The following auto-configuration classes are from the spring-boot-actuator module:

Configuration Class Links

AuditAutoConfiguration javadoc

CacheStatisticsAutoConfiguration javadoc

CloudFoundryActuatorAutoConfiguration javadoc

EndpointAutoConfiguration javadoc

EndpointMBeanExportAutoConfiguration javadoc

EndpointWebMvcAutoConfiguration javadoc

HealthIndicatorAutoConfiguration javadoc

InfoContributorAutoConfiguration javadoc

JolokiaAutoConfiguration javadoc

ManagementServerPropertiesAutoConfiguration javadoc

ManagementWebSecurityAutoConfiguration javadoc

MetricExportAutoConfiguration javadoc

MetricFilterAutoConfiguration javadoc

MetricRepositoryAutoConfiguration javadoc

MetricsChannelAutoConfiguration javadoc

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

163 of 180 05/12/2016 20:33

Configuration Class Links

MetricsDropwizardAutoConfiguration javadoc

PublicMetricsAutoConfiguration javadoc

TraceRepositoryAutoConfiguration javadoc

TraceWebFilterAutoConfiguration javadoc

Appendix D. Test auto-configuration annotations
Here is a table of the various @…Test annotations that can be used to test slices of your application and the auto-configuration that they import by default:

Test slice Imported auto-configuration

@DataJpaTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.jpa.JpaRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.JdbcTemplateAutoConfiguration

org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration

org.springframework.boot.autoconfigure.orm.jpa.HibernateJpaAutoConfiguration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

org.springframework.boot.test.autoconfigure.jdbc.TestDatabaseAutoConfiguration

org.springframework.boot.test.autoconfigure.orm.jpa.TestEntityManagerAutoConfiguration

@JdbcTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.JdbcTemplateAutoConfiguration

org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

org.springframework.boot.test.autoconfigure.jdbc.TestDatabaseAutoConfiguration

@JsonTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.test.autoconfigure.json.JsonTestersAutoConfiguration

@RestClientTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.autoconfigure.web.HttpMessageConvertersAutoConfiguration

org.springframework.boot.autoconfigure.web.WebClientAutoConfiguration

org.springframework.boot.test.autoconfigure.web.client.MockRestServiceServerAutoConfiguration

org.springframework.boot.test.autoconfigure.web.client.WebClientRestTemplateAutoConfiguration

@WebMvcTest org.springframework.boot.autoconfigure.MessageSourceAutoConfiguration

org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.freemarker.FreeMarkerAutoConfiguration

org.springframework.boot.autoconfigure.groovy.template.GroovyTemplateAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.hateoas.HypermediaAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.autoconfigure.mustache.MustacheAutoConfiguration

org.springframework.boot.autoconfigure.thymeleaf.ThymeleafAutoConfiguration

org.springframework.boot.autoconfigure.web.HttpMessageConvertersAutoConfiguration

org.springframework.boot.autoconfigure.web.WebMvcAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcSecurityAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcWebClientAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcWebDriverAutoConfiguration

Appendix E. The executable jar format
The spring-boot-loader modules allows Spring Boot to support executable jar and war files. If you’re using the Maven or Gradle plugin, executable jars are
automatically generated and you generally won’t need to know the details of how they work.

If you need to create executable jars from a different build system, or if you are just curious about the underlying technology, this section provides some background.

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

164 of 180 05/12/2016 20:33

E.1 Nested JARs
Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves contained within a jar). This can be problematic if you are looking to
distribute a self-contained application that you can just run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all classes, from all jars, into a single 'uber jar'. The problem with shaded jars is
that it becomes hard to see which libraries you are actually using in your application. It can also be problematic if the same filename is used (but with different content) in
multiple jars. Spring Boot takes a different approach and allows you to actually nest jars directly.

E.1.1 The executable jar file structure

Spring Boot Loader compatible jar files should be structured in the following way:

example.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-BOOT-INF
 +-classes
 | +-mycompany
 | +-project
 | +-YourClasses.class
 +-lib
 +-dependency1.jar
 +-dependency2.jar

Application classes should be placed in a nested BOOT-INF/classes directory. Dependencies should be placed in a nested BOOT-INF/lib directory.

E.1.2 The executable war file structure

Spring Boot Loader compatible war files should be structured in the following way:

example.war
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-WEB-INF
 +-classes
 | +-com
 | +-mycompany
 | +-project
 | +-YourClasses.class
 +-lib
 | +-dependency1.jar
 | +-dependency2.jar
 +-lib-provided
 +-servlet-api.jar
 +-dependency3.jar

Dependencies should be placed in a nested WEB-INF/lib directory. Any dependencies that are required when running embedded but are not required when deploying
to a traditional web container should be placed in WEB-INF/lib-provided .

E.2 Spring Boot’s “JarFile” class
The core class used to support loading nested jars is org.springframework.boot.loader.jar.JarFile . It allows you to load jar content from a standard jar file,
or from nested child jar data. When first loaded, the location of each JarEntry is mapped to a physical file offset of the outer jar:

myapp.jar
+-------------------+-------------------------+
/BOOT-INF/classes	/BOOT-INF/lib/mylib.jar					
+-----------------+		+-----------+----------+				
	A.class			B.class	C.class	
+-----------------+		+-----------+----------+				
+-------------------+-------------------------+
 ^ ^ ^
 0063 3452 3980

The example above shows how A.class can be found in /BOOT-INF/classes in myapp.jar position 0063 . B.class from the nested jar can actually be found
in myapp.jar position 3452 and C.class is at position 3980 .

Armed with this information, we can load specific nested entries by simply seeking to the appropriate part of the outer jar. We don’t need to unpack the archive and we
don’t need to read all entry data into memory.

E.2.1 Compatibility with the standard Java “JarFile”

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

165 of 180 05/12/2016 20:33

Spring Boot Loader strives to remain compatible with existing code and libraries. org.springframework.boot.loader.jar.JarFile extends from
java.util.jar.JarFile and should work as a drop-in replacement. The getURL() method will return a URL that opens a java.net.JarURLConnection
compatible connection and can be used with Java’s URLClassLoader .

E.3 Launching executable jars
The org.springframework.boot.loader.Launcher class is a special bootstrap class that is used as an executable jars main entry point. It is the actual
Main-Class in your jar file and it’s used to setup an appropriate URLClassLoader and ultimately call your main() method.

There are 3 launcher subclasses (JarLauncher , WarLauncher and PropertiesLauncher). Their purpose is to load resources (.class files etc.) from nested
jar files or war files in directories (as opposed to explicitly on the classpath). In the case of JarLauncher and WarLauncher the nested paths are fixed.
JarLauncher looks in BOOT-INF/lib/ and WarLauncher looks in WEB-INF/lib/ and WEB-INF/lib-provided/ so you just add extra jars in those
locations if you want more. The PropertiesLauncher looks in BOOT-INF/lib/ in your application archive by default, but you can add additional locations by
setting an environment variable LOADER_PATH or loader.path in application.properties (comma-separated list of directories or archives).

E.3.1 Launcher manifest

You need to specify an appropriate Launcher as the Main-Class attribute of META-INF/MANIFEST.MF . The actual class that you want to launch (i.e. the class
that you wrote that contains a main method) should be specified in the Start-Class attribute.

For example, here is a typical MANIFEST.MF for an executable jar file:

Main-Class: org.springframework.boot.loader.JarLauncher
Start-Class: com.mycompany.project.MyApplication

For a war file, it would be:

Main-Class: org.springframework.boot.loader.WarLauncher
Start-Class: com.mycompany.project.MyApplication

You do not need to specify Class-Path entries in your manifest file, the classpath will be deduced from the nested jars.

E.3.2 Exploded archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud Foundry operates in this way. You can run an unpacked archive by
simply starting the appropriate launcher:

$ unzip -q myapp.jar
$ java org.springframework.boot.loader.JarLauncher

E.4 PropertiesLauncher Features
PropertiesLauncher has a few special features that can be enabled with external properties (System properties, environment variables, manifest entries or
application.properties).

Key Purpose

loader.path Comma-separated Classpath, e.g. lib,${HOME}/app/lib . Earlier entries take precedence, just like a regular -classpath
on the javac command line.

loader.home Location of additional properties file, e.g. /opt/app (defaults to ${user.dir})

loader.args Default arguments for the main method (space separated)

loader.main Name of main class to launch, e.g. com.app.Application .

loader.config.name Name of properties file, e.g. loader (defaults to application).

loader.config.location Path to properties file, e.g. classpath:loader.properties (defaults to application.properties).

loader.system Boolean flag to indicate that all properties should be added to System properties (defaults to false)

When specified as environment variables or manifest entries, the following names should be used:

Key Manifest entry Environment variable

loader.path Loader-Path LOADER_PATH

loader.home LOADER_HOME

loader.args Loader-Args LOADER_ARGS

loader.main Start-Class LOADER_MAIN

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

166 of 180 05/12/2016 20:33

Key Manifest entry Environment variable

loader.config.location LOADER_CONFIG_LOCATION

loader.system LOADER_SYSTEM

Build plugins automatically move the Main-Class attribute to Start-Class when the fat jar is built. If you are using that, specify the name of the class
to launch using the Main-Class attribute and leave out Start-Class .

loader.home is the directory location of an additional properties file (overriding the default) as long as loader.config.location is not specified.
loader.path can contain directories (scanned recursively for jar and zip files), archive paths, or wildcard patterns (for the default JVM behavior).
loader.path (if empty) defaults to BOOT-INF/lib (meaning a local directory or a nested one if running from an archive). Because of this
PropertiesLauncher behaves the same as JarLauncher when no additional configuration is provided.
Placeholder replacement is done from System and environment variables plus the properties file itself on all values before use.

E.5 Executable jar restrictions
There are a number of restrictions that you need to consider when working with a Spring Boot Loader packaged application.

E.5.1 Zip entry compression

The ZipEntry for a nested jar must be saved using the ZipEntry.STORED method. This is required so that we can seek directly to individual content within the
nested jar. The content of the nested jar file itself can still be compressed, as can any other entries in the outer jar.

E.5.2 System ClassLoader

Launched applications should use Thread.getContextClassLoader() when loading classes (most libraries and frameworks will do this by default). Trying to load
nested jar classes via ClassLoader.getSystemClassLoader() will fail. Please be aware that java.util.Logging always uses the system classloader, for this
reason you should consider a different logging implementation.

E.6 Alternative single jar solutions
If the above restrictions mean that you cannot use Spring Boot Loader the following alternatives could be considered:

Maven Shade Plugin
JarClassLoader
OneJar

Appendix F. Dependency versions
The table below provides details of all of the dependency versions that are provided by Spring Boot in its CLI, Maven dependency management and Gradle plugin. When
you declare a dependency on one of these artifacts without declaring a version the version that is listed in the table will be used.

Group ID Artifact ID Version

antlr antlr 2.7.7

ch.qos.logback logback-access 1.1.7

ch.qos.logback logback-classic 1.1.7

ch.qos.logback logback-core 1.1.7

com.atomikos transactions-jdbc 3.9.3

com.atomikos transactions-jms 3.9.3

com.atomikos transactions-jta 3.9.3

com.couchbase.client couchbase-spring-cache 2.0.0

com.couchbase.client java-client 2.2.8

com.datastax.cassandra cassandra-driver-core 3.1.0

com.datastax.cassandra cassandra-driver-mapping 3.1.0

com.fasterxml classmate 1.3.3

com.fasterxml.jackson.core jackson-annotations 2.8.4

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

167 of 180 05/12/2016 20:33

Group ID Artifact ID Version

com.fasterxml.jackson.core jackson-core 2.8.4

com.fasterxml.jackson.core jackson-databind 2.8.4

com.fasterxml.jackson.dataformat jackson-dataformat-cbor 2.8.4

com.fasterxml.jackson.dataformat jackson-dataformat-csv 2.8.4

com.fasterxml.jackson.dataformat jackson-dataformat-smile 2.8.4

com.fasterxml.jackson.dataformat jackson-dataformat-xml 2.8.4

com.fasterxml.jackson.dataformat jackson-dataformat-yaml 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-guava 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-hibernate4 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-hibernate5 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-jaxrs 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-jdk8 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-joda 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-json-org 2.8.4

com.fasterxml.jackson.datatype jackson-datatype-jsr310 2.8.4

com.fasterxml.jackson.jaxrs jackson-jaxrs-base 2.8.4

com.fasterxml.jackson.jaxrs jackson-jaxrs-json-provider 2.8.4

com.fasterxml.jackson.module jackson-module-jaxb-annotations 2.8.4

com.fasterxml.jackson.module jackson-module-kotlin 2.8.4

com.fasterxml.jackson.module jackson-module-parameter-names 2.8.4

com.github.ben-manes.caffeine caffeine 2.3.4

com.github.mxab.thymeleaf.extras thymeleaf-extras-data-attribute 1.3

com.google.appengine appengine-api-1.0-sdk 1.9.44

com.google.code.gson gson 2.7

com.googlecode.json-simple json-simple 1.1.1

com.h2database h2 1.4.193

com.hazelcast hazelcast 3.7.1

com.hazelcast hazelcast-client 3.7.1

com.hazelcast hazelcast-hibernate4 3.6.5

com.hazelcast hazelcast-hibernate5 1.0.1

com.hazelcast hazelcast-spring 3.7.1

com.jayway.jsonpath json-path 2.2.0

com.jayway.jsonpath json-path-assert 2.2.0

com.microsoft.sqlserver mssql-jdbc 6.1.0.jre8

com.querydsl querydsl-apt 4.1.4

com.querydsl querydsl-collections 4.1.4

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

168 of 180 05/12/2016 20:33

Group ID Artifact ID Version

com.querydsl querydsl-core 4.1.4

com.querydsl querydsl-jpa 4.1.4

com.querydsl querydsl-mongodb 4.1.4

com.samskivert jmustache 1.12

com.sendgrid sendgrid-java 2.2.2

com.sun.mail javax.mail 1.5.6

com.timgroup java-statsd-client 3.1.0

com.zaxxer HikariCP 2.4.7

com.zaxxer HikariCP-java6 2.3.13

commons-beanutils commons-beanutils 1.9.3

commons-codec commons-codec 1.10

commons-collections commons-collections 3.2.2

commons-digester commons-digester 2.1

commons-pool commons-pool 1.6

de.flapdoodle.embed de.flapdoodle.embed.mongo 1.50.5

dom4j dom4j 1.6.1

io.dropwizard.metrics metrics-core 3.1.2

io.dropwizard.metrics metrics-ganglia 3.1.2

io.dropwizard.metrics metrics-graphite 3.1.2

io.dropwizard.metrics metrics-servlets 3.1.2

io.projectreactor reactor-core 3.0.3.RELEASE

io.projectreactor.addons reactor-adapter 3.0.3.RELEASE

io.projectreactor.addons reactor-logback 3.0.3.RELEASE

io.projectreactor.addons reactor-test 3.0.3.RELEASE

io.searchbox jest 2.0.3

io.undertow undertow-core 1.4.3.Final

io.undertow undertow-servlet 1.4.3.Final

io.undertow undertow-websockets-jsr 1.4.3.Final

javax.cache cache-api 1.0.0

javax.jms javax.jms-api 2.0.1

javax.mail javax.mail-api 1.5.6

javax.servlet javax.servlet-api 3.1.0

javax.servlet jstl 1.2

javax.transaction javax.transaction-api 1.2

jaxen jaxen 1.1.6

joda-time joda-time 2.9.5

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

169 of 180 05/12/2016 20:33

Group ID Artifact ID Version

junit junit 4.12

mysql mysql-connector-java 5.1.40

net.java.dev.jna jna 4.2.2

net.sf.ehcache ehcache 2.10.3

net.sourceforge.htmlunit htmlunit 2.23

net.sourceforge.jtds jtds 1.3.1

net.sourceforge.nekohtml nekohtml 1.9.22

nz.net.ultraq.thymeleaf thymeleaf-layout-dialect 1.4.0

org.apache.activemq activemq-amqp 5.13.4

org.apache.activemq activemq-blueprint 5.13.4

org.apache.activemq activemq-broker 5.13.4

org.apache.activemq activemq-camel 5.13.4

org.apache.activemq activemq-client 5.13.4

org.apache.activemq activemq-console 5.13.4

org.apache.activemq activemq-http 5.13.4

org.apache.activemq activemq-jaas 5.13.4

org.apache.activemq activemq-jdbc-store 5.13.4

org.apache.activemq activemq-jms-pool 5.13.4

org.apache.activemq activemq-kahadb-store 5.13.4

org.apache.activemq activemq-karaf 5.13.4

org.apache.activemq activemq-leveldb-store 5.13.4

org.apache.activemq activemq-log4j-appender 5.13.4

org.apache.activemq activemq-mqtt 5.13.4

org.apache.activemq activemq-openwire-generator 5.13.4

org.apache.activemq activemq-openwire-legacy 5.13.4

org.apache.activemq activemq-osgi 5.13.4

org.apache.activemq activemq-partition 5.13.4

org.apache.activemq activemq-pool 5.13.4

org.apache.activemq activemq-ra 5.13.4

org.apache.activemq activemq-run 5.13.4

org.apache.activemq activemq-runtime-config 5.13.4

org.apache.activemq activemq-shiro 5.13.4

org.apache.activemq activemq-spring 5.13.4

org.apache.activemq activemq-stomp 5.13.4

org.apache.activemq activemq-web 5.13.4

org.apache.activemq artemis-amqp-protocol 1.5.0

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

170 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.apache.activemq artemis-commons 1.5.0

org.apache.activemq artemis-core-client 1.5.0

org.apache.activemq artemis-jms-client 1.5.0

org.apache.activemq artemis-jms-server 1.5.0

org.apache.activemq artemis-journal 1.5.0

org.apache.activemq artemis-native 1.5.0

org.apache.activemq artemis-selector 1.5.0

org.apache.activemq artemis-server 1.5.0

org.apache.activemq artemis-service-extensions 1.5.0

org.apache.commons commons-dbcp2 2.1.1

org.apache.commons commons-pool2 2.4.2

org.apache.derby derby 10.12.1.1

org.apache.httpcomponents httpasyncclient 4.1.2

org.apache.httpcomponents httpclient 4.5.2

org.apache.httpcomponents httpcore 4.4.5

org.apache.httpcomponents httpmime 4.5.2

org.apache.logging.log4j log4j-1.2-api 2.7

org.apache.logging.log4j log4j-api 2.7

org.apache.logging.log4j log4j-api-scala_2.10 2.7

org.apache.logging.log4j log4j-api-scala_2.11 2.7

org.apache.logging.log4j log4j-core 2.7

org.apache.logging.log4j log4j-flume-ng 2.7

org.apache.logging.log4j log4j-iostreams 2.7

org.apache.logging.log4j log4j-jcl 2.7

org.apache.logging.log4j log4j-jmx-gui 2.7

org.apache.logging.log4j log4j-jul 2.7

org.apache.logging.log4j log4j-liquibase 2.7

org.apache.logging.log4j log4j-nosql 2.7

org.apache.logging.log4j log4j-slf4j-impl 2.7

org.apache.logging.log4j log4j-taglib 2.7

org.apache.logging.log4j log4j-web 2.7

org.apache.solr solr-solrj 5.5.3

org.apache.tomcat tomcat-jdbc 8.5.6

org.apache.tomcat tomcat-jsp-api 8.5.6

org.apache.tomcat.embed tomcat-embed-core 8.5.6

org.apache.tomcat.embed tomcat-embed-el 8.5.6

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

171 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.apache.tomcat.embed tomcat-embed-jasper 8.5.6

org.apache.tomcat.embed tomcat-embed-websocket 8.5.6

org.aspectj aspectjrt 1.8.9

org.aspectj aspectjtools 1.8.9

org.aspectj aspectjweaver 1.8.9

org.assertj assertj-core 2.5.0

org.codehaus.btm btm 2.1.4

org.codehaus.groovy groovy 2.4.7

org.codehaus.groovy groovy-all 2.4.7

org.codehaus.groovy groovy-ant 2.4.7

org.codehaus.groovy groovy-bsf 2.4.7

org.codehaus.groovy groovy-console 2.4.7

org.codehaus.groovy groovy-docgenerator 2.4.7

org.codehaus.groovy groovy-groovydoc 2.4.7

org.codehaus.groovy groovy-groovysh 2.4.7

org.codehaus.groovy groovy-jmx 2.4.7

org.codehaus.groovy groovy-json 2.4.7

org.codehaus.groovy groovy-jsr223 2.4.7

org.codehaus.groovy groovy-nio 2.4.7

org.codehaus.groovy groovy-servlet 2.4.7

org.codehaus.groovy groovy-sql 2.4.7

org.codehaus.groovy groovy-swing 2.4.7

org.codehaus.groovy groovy-templates 2.4.7

org.codehaus.groovy groovy-test 2.4.7

org.codehaus.groovy groovy-testng 2.4.7

org.codehaus.groovy groovy-xml 2.4.7

org.codehaus.janino janino 2.7.8

org.eclipse.jetty apache-jsp 9.3.14.v20161028

org.eclipse.jetty apache-jstl 9.3.14.v20161028

org.eclipse.jetty jetty-annotations 9.3.14.v20161028

org.eclipse.jetty jetty-client 9.3.14.v20161028

org.eclipse.jetty jetty-continuation 9.3.14.v20161028

org.eclipse.jetty jetty-deploy 9.3.14.v20161028

org.eclipse.jetty jetty-http 9.3.14.v20161028

org.eclipse.jetty jetty-io 9.3.14.v20161028

org.eclipse.jetty jetty-jmx 9.3.14.v20161028

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

172 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.eclipse.jetty jetty-plus 9.3.14.v20161028

org.eclipse.jetty jetty-proxy 9.3.14.v20161028

org.eclipse.jetty jetty-security 9.3.14.v20161028

org.eclipse.jetty jetty-server 9.3.14.v20161028

org.eclipse.jetty jetty-servlet 9.3.14.v20161028

org.eclipse.jetty jetty-servlets 9.3.14.v20161028

org.eclipse.jetty jetty-util 9.3.14.v20161028

org.eclipse.jetty jetty-webapp 9.3.14.v20161028

org.eclipse.jetty jetty-xml 9.3.14.v20161028

org.eclipse.jetty.orbit javax.servlet.jsp 2.2.0.v201112011158

org.eclipse.jetty.websocket javax-websocket-server-impl 9.3.14.v20161028

org.eclipse.jetty.websocket websocket-client 9.3.14.v20161028

org.eclipse.jetty.websocket websocket-server 9.3.14.v20161028

org.ehcache ehcache 3.1.3

org.ehcache ehcache-clustered 3.1.3

org.ehcache ehcache-transactions 3.1.3

org.elasticsearch elasticsearch 2.4.1

org.firebirdsql.jdbc jaybird-jdk16 2.2.11

org.firebirdsql.jdbc jaybird-jdk17 2.2.11

org.firebirdsql.jdbc jaybird-jdk18 2.2.11

org.flywaydb flyway-core 3.2.1

org.freemarker freemarker 2.3.25-incubating

org.glassfish javax.el 3.0.0

org.glassfish.jersey.containers jersey-container-servlet 2.24

org.glassfish.jersey.containers jersey-container-servlet-core 2.24

org.glassfish.jersey.core jersey-server 2.24

org.glassfish.jersey.ext jersey-bean-validation 2.24

org.glassfish.jersey.ext jersey-spring3 2.24

org.glassfish.jersey.media jersey-media-json-jackson 2.24

org.hamcrest hamcrest-core 1.3

org.hamcrest hamcrest-library 1.3

org.hibernate hibernate-core 5.0.11.Final

org.hibernate hibernate-ehcache 5.0.11.Final

org.hibernate hibernate-entitymanager 5.0.11.Final

org.hibernate hibernate-envers 5.0.11.Final

org.hibernate hibernate-java8 5.0.11.Final

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

173 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.hibernate hibernate-jpamodelgen 5.0.11.Final

org.hibernate hibernate-validator 5.2.4.Final

org.hibernate hibernate-validator-annotation-processor 5.2.4.Final

org.hsqldb hsqldb 2.3.3

org.infinispan infinispan-jcache 8.2.4.Final

org.infinispan infinispan-spring4-common 8.2.4.Final

org.infinispan infinispan-spring4-embedded 8.2.4.Final

org.javassist javassist 3.20.0-GA

org.jboss jboss-transaction-spi 7.3.4.Final

org.jboss.logging jboss-logging 3.3.0.Final

org.jboss.narayana.jta jdbc 5.3.5.Final

org.jboss.narayana.jta jms 5.3.5.Final

org.jboss.narayana.jta jta 5.3.5.Final

org.jboss.narayana.jts narayana-jts-integration 5.3.5.Final

org.jdom jdom2 2.0.6

org.jolokia jolokia-core 1.3.5

org.jooq jooq 3.8.5

org.jooq jooq-codegen 3.8.5

org.jooq jooq-meta 3.8.5

org.json json 20140107

org.liquibase liquibase-core 3.5.3

org.mariadb.jdbc mariadb-java-client 1.4.6

org.mockito mockito-core 1.10.19

org.mongodb bson 3.4.0

org.mongodb mongodb-driver 3.4.0

org.mongodb mongodb-driver-async 3.4.0

org.mongodb mongodb-driver-core 3.4.0

org.mongodb mongo-java-driver 3.4.0

org.mortbay.jasper apache-el 8.0.33

org.neo4j neo4j-ogm-api 2.1.0-M01

org.neo4j neo4j-ogm-compiler 2.1.0-M01

org.neo4j neo4j-ogm-core 2.1.0-M01

org.neo4j neo4j-ogm-http-driver 2.1.0-M01

org.postgresql postgresql 9.4.1212.jre7

org.projectlombok lombok 1.16.10

org.seleniumhq.selenium htmlunit-driver 2.23.2

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

174 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.seleniumhq.selenium selenium-api 2.53.1

org.seleniumhq.selenium selenium-chrome-driver 2.53.1

org.seleniumhq.selenium selenium-firefox-driver 2.53.1

org.seleniumhq.selenium selenium-ie-driver 2.53.1

org.seleniumhq.selenium selenium-java 2.53.1

org.seleniumhq.selenium selenium-remote-driver 2.53.1

org.seleniumhq.selenium selenium-safari-driver 2.53.1

org.seleniumhq.selenium selenium-support 2.53.1

org.skyscreamer jsonassert 1.3.0

org.slf4j jcl-over-slf4j 1.7.21

org.slf4j jul-to-slf4j 1.7.21

org.slf4j log4j-over-slf4j 1.7.21

org.slf4j slf4j-api 1.7.21

org.slf4j slf4j-jdk14 1.7.21

org.slf4j slf4j-log4j12 1.7.21

org.slf4j slf4j-simple 1.7.21

org.spockframework spock-core 1.0-groovy-2.4

org.spockframework spock-spring 1.0-groovy-2.4

org.springframework spring-aop 5.0.0.BUILD-SNAPSHOT

org.springframework spring-aspects 5.0.0.BUILD-SNAPSHOT

org.springframework spring-beans 5.0.0.BUILD-SNAPSHOT

org.springframework spring-context 5.0.0.BUILD-SNAPSHOT

org.springframework spring-context-indexer 5.0.0.BUILD-SNAPSHOT

org.springframework spring-context-support 5.0.0.BUILD-SNAPSHOT

org.springframework spring-core 5.0.0.BUILD-SNAPSHOT

org.springframework spring-expression 5.0.0.BUILD-SNAPSHOT

org.springframework spring-instrument 5.0.0.BUILD-SNAPSHOT

org.springframework spring-jdbc 5.0.0.BUILD-SNAPSHOT

org.springframework spring-jms 5.0.0.BUILD-SNAPSHOT

org.springframework springloaded 1.2.6.RELEASE

org.springframework spring-messaging 5.0.0.BUILD-SNAPSHOT

org.springframework spring-orm 5.0.0.BUILD-SNAPSHOT

org.springframework spring-oxm 5.0.0.BUILD-SNAPSHOT

org.springframework spring-test 5.0.0.BUILD-SNAPSHOT

org.springframework spring-tx 5.0.0.BUILD-SNAPSHOT

org.springframework spring-web 5.0.0.BUILD-SNAPSHOT

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

175 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.springframework spring-webmvc 5.0.0.BUILD-SNAPSHOT

org.springframework spring-web-reactive 5.0.0.BUILD-SNAPSHOT

org.springframework spring-websocket 5.0.0.BUILD-SNAPSHOT

org.springframework.amqp spring-amqp 2.0.0.BUILD-SNAPSHOT

org.springframework.amqp spring-rabbit 2.0.0.BUILD-SNAPSHOT

org.springframework.batch spring-batch-core 3.0.7.RELEASE

org.springframework.batch spring-batch-infrastructure 3.0.7.RELEASE

org.springframework.batch spring-batch-integration 3.0.7.RELEASE

org.springframework.batch spring-batch-test 3.0.7.RELEASE

org.springframework.boot spring-boot 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-actuator 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-actuator-docs 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-autoconfigure 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-configuration-metadata 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-configuration-processor 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-devtools 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-loader 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-loader-tools 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-activemq 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-actuator 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-amqp 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-aop 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-artemis 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-batch 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-cache 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-cloud-connectors 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-cassandra 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-couchbase 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-elasticsearch 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-jpa 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-mongodb 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-neo4j 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-redis 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-rest 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-data-solr 2.0.0.BUILD-SNAPSHOT

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

176 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.springframework.boot spring-boot-starter-freemarker 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-groovy-templates 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-hateoas 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-integration 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jdbc 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jersey 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jetty 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jooq 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jta-atomikos 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jta-bitronix 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-jta-narayana 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-log4j2 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-logging 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-mail 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-mobile 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-mustache 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-security 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-social-facebook 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-social-linkedin 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-social-twitter 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-test 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-thymeleaf 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-tomcat 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-undertow 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-validation 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-web 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-web-services 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-starter-websocket 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-test 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-test-autoconfigure 2.0.0.BUILD-SNAPSHOT

org.springframework.boot spring-boot-test-support 2.0.0.BUILD-SNAPSHOT

org.springframework.cloud spring-cloud-cloudfoundry-connector 1.2.3.RELEASE

org.springframework.cloud spring-cloud-core 1.2.3.RELEASE

org.springframework.cloud spring-cloud-heroku-connector 1.2.3.RELEASE

org.springframework.cloud spring-cloud-localconfig-connector 1.2.3.RELEASE

org.springframework.cloud spring-cloud-spring-service-connector 1.2.3.RELEASE

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

177 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.springframework.data spring-cql 1.5.0.BUILD-SNAPSHOT

org.springframework.data spring-data-cassandra 1.5.0.BUILD-SNAPSHOT

org.springframework.data spring-data-commons 1.13.0.BUILD-SNAPSHOT

org.springframework.data spring-data-couchbase 2.2.0.BUILD-SNAPSHOT

org.springframework.data spring-data-elasticsearch 2.1.0.BUILD-SNAPSHOT

org.springframework.data spring-data-envers 1.1.0.BUILD-SNAPSHOT

org.springframework.data spring-data-gemfire 1.9.0.BUILD-SNAPSHOT

org.springframework.data spring-data-jpa 1.11.0.BUILD-SNAPSHOT

org.springframework.data spring-data-keyvalue 1.2.0.BUILD-SNAPSHOT

org.springframework.data spring-data-mongodb 1.10.0.BUILD-SNAPSHOT

org.springframework.data spring-data-mongodb-cross-store 1.10.0.BUILD-SNAPSHOT

org.springframework.data spring-data-mongodb-log4j 1.10.0.BUILD-SNAPSHOT

org.springframework.data spring-data-neo4j 4.2.0.BUILD-SNAPSHOT

org.springframework.data spring-data-redis 1.8.0.BUILD-SNAPSHOT

org.springframework.data spring-data-rest-core 2.6.0.BUILD-SNAPSHOT

org.springframework.data spring-data-rest-hal-browser 2.6.0.BUILD-SNAPSHOT

org.springframework.data spring-data-rest-webmvc 2.6.0.BUILD-SNAPSHOT

org.springframework.data spring-data-solr 2.1.0.BUILD-SNAPSHOT

org.springframework.hateoas spring-hateoas 0.21.0.RELEASE

org.springframework.integration spring-integration-amqp 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-core 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-event 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-feed 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-file 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-ftp 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-gemfire 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-groovy 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-http 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-ip 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-jdbc 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-jms 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-jmx 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-jpa 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-mail 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-mongodb 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-mqtt 5.0.0.BUILD-SNAPSHOT

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

178 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.springframework.integration spring-integration-redis 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-rmi 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-scripting 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-security 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-sftp 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-stomp 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-stream 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-syslog 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-test 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-twitter 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-websocket 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-ws 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-xml 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-xmpp 5.0.0.BUILD-SNAPSHOT

org.springframework.integration spring-integration-zookeeper 5.0.0.BUILD-SNAPSHOT

org.springframework.kafka spring-kafka 1.1.1.RELEASE

org.springframework.kafka spring-kafka-test 1.1.1.RELEASE

org.springframework.mobile spring-mobile-device 1.1.5.RELEASE

org.springframework.plugin spring-plugin-core 1.2.0.RELEASE

org.springframework.restdocs spring-restdocs-core 1.2.0.BUILD-SNAPSHOT

org.springframework.restdocs spring-restdocs-mockmvc 1.2.0.BUILD-SNAPSHOT

org.springframework.restdocs spring-restdocs-restassured 1.2.0.BUILD-SNAPSHOT

org.springframework.retry spring-retry 1.2.0.RC1

org.springframework.security spring-security-acl 4.2.0.RELEASE

org.springframework.security spring-security-aspects 4.2.0.RELEASE

org.springframework.security spring-security-cas 4.2.0.RELEASE

org.springframework.security spring-security-config 4.2.0.RELEASE

org.springframework.security spring-security-core 4.2.0.RELEASE

org.springframework.security spring-security-crypto 4.2.0.RELEASE

org.springframework.security spring-security-data 4.2.0.RELEASE

org.springframework.security spring-security-jwt 1.0.5.RELEASE

org.springframework.security spring-security-ldap 4.2.0.RELEASE

org.springframework.security spring-security-messaging 4.2.0.RELEASE

org.springframework.security spring-security-openid 4.2.0.RELEASE

org.springframework.security spring-security-remoting 4.2.0.RELEASE

org.springframework.security spring-security-taglibs 4.2.0.RELEASE

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

179 of 180 05/12/2016 20:33

Group ID Artifact ID Version

org.springframework.security spring-security-test 4.2.0.RELEASE

org.springframework.security spring-security-web 4.2.0.RELEASE

org.springframework.security.oauth spring-security-oauth 2.0.12.RELEASE

org.springframework.security.oauth spring-security-oauth2 2.0.12.RELEASE

org.springframework.session spring-session 1.3.0.RC1

org.springframework.session spring-session-data-gemfire 1.3.0.RC1

org.springframework.session spring-session-data-mongo 1.3.0.RC1

org.springframework.session spring-session-data-redis 1.3.0.RC1

org.springframework.session spring-session-hazelcast 1.3.0.RC1

org.springframework.session spring-session-jdbc 1.3.0.RC1

org.springframework.social spring-social-config 2.0.0.M1

org.springframework.social spring-social-core 2.0.0.M1

org.springframework.social spring-social-facebook 3.0.0.M1

org.springframework.social spring-social-facebook-web 3.0.0.M1

org.springframework.social spring-social-linkedin 2.0.0.M1

org.springframework.social spring-social-security 2.0.0.M1

org.springframework.social spring-social-twitter 2.0.0.M1

org.springframework.social spring-social-web 2.0.0.M1

org.springframework.ws spring-ws-core 2.4.0.RELEASE

org.springframework.ws spring-ws-security 2.4.0.RELEASE

org.springframework.ws spring-ws-support 2.4.0.RELEASE

org.springframework.ws spring-ws-test 2.4.0.RELEASE

org.thymeleaf thymeleaf 2.1.5.RELEASE

org.thymeleaf thymeleaf-spring4 2.1.5.RELEASE

org.thymeleaf.extras thymeleaf-extras-conditionalcomments 2.1.2.RELEASE

org.thymeleaf.extras thymeleaf-extras-java8time 2.1.0.RELEASE

org.thymeleaf.extras thymeleaf-extras-springsecurity4 2.1.2.RELEASE

org.webjars hal-browser 9f96c74

org.webjars webjars-locator 0.32

org.xerial sqlite-jdbc 3.8.11.2

org.yaml snakeyaml 1.17

redis.clients jedis 2.9.0

wsdl4j wsdl4j 1.6.3

xml-apis xml-apis 1.4.01

Spring Boot Reference Guide http://docs.spring.io/spring-boot/docs/current-S...

180 of 180 05/12/2016 20:33

