
© 2008 Carnegie Mellon University

Secure Coding in C and C++
Race Conditions

This material is approved for public release.
Distribution is limited by the Software Engineering Institute to attendees.

Robert C. Seacord & David Svoboda

2

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

3

Concurrency
Concurrency occurs when two or more separate
execution flows are able to run simultaneously
[Dijkstra 65].

Examples of independent execution flows include
threads
processes
tasks

Concurrent execution of multiple flows of
execution is an essential part of a modern
computing environment.

4

Race Conditions
An execution ordering of concurrent flows that
results in undesired behavior is called a race
condition—a software defect and frequent source
of vulnerabilities.

Race conditions result from runtime environ-
ments, including operating systems, that must
control access to shared resources, especially
through process scheduling.

5

Race Condition Properties
There are three properties that are necessary for
a race condition to exist:

1. Concurrency Property. There must be at least
two control flows executing concurrently.

2. Shared Object Property. A shared race object
must be accessed by both of the concurrent
flows.

3. Change State Property. At least one of the
control flows must alter the state of the race
object.

6

Eliminating Race Conditions
Eliminating race conditions begins with identifying
race windows.

A race window is a code segment that accesses
the race object in a way that opens a window of
opportunity during which other concurrent flows
could “race in” and alter the race object.

Race conditions are eliminated by making
conflicting race windows mutually exclusive.

7

Mutual Exclusion
Once a potential race window begins execution,
no conflicting race window can be allowed to
execute until the first race window has completed.

Race windows are referred to as critical sections
because it is critical that the two conflicting race
windows not overlap execution.

Treating each critical section as an atomic unit
with respect to conflicting race windows is called
mutual exclusion.

8

Synchronization Primitives
Language facilities for implementing mutual exclusion are
called synchronization primitives.

C and C++ support a variety of synchronization
primitives:

mutex variables
semaphores
pipes
named pipes
condition variables
CRITICAL_SECTION objects
lock variables

Incorrect use of synchronization primitives can lead to
deadlock.

9

Deadlock
Deadlock occurs whenever two or more control flows block
each other in such a way that none can continue to execute.

Deadlock results from a cycle of concurrent execution flows in
which each flow in the cycle has acquired a synchronization
object that results in the suspension of the subsequent flow in
the cycle.

Deadlock can result in a denial-of-service attack.
VU#132110 Apache HTTP Server versions 2.0.48 and
prior contain a race condition in the handling of short-lived
connections.
When using multiple listening sockets, a short-lived
connection on a rarely-used socket may cause the child
process to hold the accept mutex, blocking new
connections from being served until another connection
uses the socket.

10

Exploiting Deadlock 1
Deadlock can result from altering

processor speeds
changes in the process or thread scheduling
algorithms
different memory constraints imposed at the time
of execution
any asynchronous event capable of interrupting
the program’s execution
the states of other concurrently executing
processes

11

Exploiting Deadlock 2
Often an attack is an automated attempt to vary
conditions until the race behavior is exposed.

By exposing the computer system to an unusually
heavy load, it may be possible to effectively
lengthen the time required to execute a race
window.

The possibility of deadlock should always be
viewed as a security flaw.

12

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

13

Trusted/Untrusted Control Flows
Race conditions can result from trusted or
untrusted control flows.

Trusted control flows include tightly coupled
threads of execution that are part of the same
program.

An untrusted control flow is a separate application
or process, often of unknown origin, that executes
concurrently.

14

Multitasking Systems w/ Shared Resources

Any system that supports multitasking with shared
resources has the potential for race conditions
from untrusted control flows.

Time of check, time of use (TOCTOU) race
conditions can occur during file I/O.

TOCTOU race conditions form a race window by
first testing (checking) a race object property and
then later accessing (using) the race object.

15

Linux TOCTOU Example
#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

FILE *fd;

if (access("/some_file", W_OK) == 0) {

printf("access granted.\n");

fd = fopen("/some_file", "wb+");

/* write to the file */

fclose(fd);

} . . .

return 0;

}

The access() function is
called to check if the file
exists and has write
permission.

File opened for writing

Race Window

16

TOCTOU Exploit 1
An external process can change or replace the
ownership of some_file.

If the vulnerable program is running with elevated
privileges, a not-normally accessible file may be
opened and written to.

If an attacker can replace some_file with a link
during the race window, this code can be
exploited to write to any file of the attacker’s
choosing.

17

TOCTOU Exploit 2
The program could be exploited by a user
executing the following shell commands during
the race window:
rm /some_file
ln /myfile /some_file

The TOCTOU condition can be mitigated by
replacing the call to access() with logic that

drops privileges
opens the file with fopen()
checks to ensure that the file was opened
successfully

18

Race Condition (GNU File Utilities v4.1)
chdir("/tmp/a");

chdir("b");

chdir("c");

chdir("..");

rmdir("c");

unlink("*");

This code relies on
the existence of a
directory with path
/tmp/a/b/c.

Race Window

An exploit is:
mv /tmp/a/b/c /tmp/c

19

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

20

Files as Locks and File Locking
Race conditions from independent processes
cannot be resolved by synchronization primitives.

Processes don’t have shared access to global
data (such as a mutex variable).

These kinds of concurrent control flows can be
synchronized using a file as a lock.

21

Simple File Locking in Linux
The sharing processes must agree on a filename
and a directory that can be shared.

A lock file is used as a proxy for the lock.
If the file exists, the lock is captured.
If the file doesn’t exist, the lock is released.

22

Simple File Lock Function

int lock(char *fn) {
int fd;
int sleep_time = 100;
while (((fd=open(fn,O_WRONLY|O_EXCL|O_CREAT,0)) == -1)

&& errno == EEXIST) {
usleep(sleep_time);
sleep_time *= 2;
if (sleep_time > MAX_SLEEP) sleep_time = MAX_SLEEP;

}
return fd;

}
void unlock(char *fn) {

if (unlink(fn) == -1) err(1, "file unlock");
}

lock() and unlock() are passed
the name of a file that serves as the
shared lock object

23

Disadvantages of File Locking
A disadvantage of this implementation for a lock
mechanism is that the open() function does not block.

The lock() function must call open() repeatedly until
the file can be created.

This repetition is sometimes called a busy form of waiting
or a spinlock.
Spinlocks consume compute time executing repeated calls
and condition tests.

A file lock can remain indefinitely if the process holding
the lock fails to call unlock().

This could occur, for example, if a process crashed.

24

Solution for Removing Lock Files
The lock() function can be modified to write the
process’s ID (PID) in the lock file.

Upon discovering an existing lock, the new lock()
searches the active process list for the saved PID.

If the process that locked the file has terminated
the lock is acquired
the lock file is updated to include the new PID

Problems remain…
The PID of the terminated process may have been reused.
The fix may contain race conditions.

25

Windows Synchronizing Processes
Windows supports a better alternative for synchronizing
across processes— the named mutex object.

Named mutexes have a name space similar to the file
system.

CreateMutex()

is called with the mutex name
creates a mutex object (if it didn’t already exist) and
returns the mutex handle

Acquire and release is accomplished by
WaitForSingleObject()
ReleaseMutex()

26

File Locks
Files, or regions of files, are locked to prevent two
processes from concurrent access.

Windows supports file locking of two types:
shared locks
– prohibit all write access to the locked file region
– allow concurrent read access to all processes

exclusive locks
– grant unrestricted file access to the locking process
– deny access to all other processes

27

Windows File Locks
A call to LockFile() obtains shared access; exclusive
access is accomplished via LockFileEx().

The lock is removed by calling UnlockFile().

Shared locks and exclusive locks eliminate the potential
for a race condition on the locked region.

The exclusive lock is similar to a mutual exclusion
solution.

The shared lock eliminates race conditions by removing
the potential for altering the state of the locked file region.

28

Mandatory vs. Advisory Locks
Windows file-locking mechanisms are called
mandatory locks, because every process
attempting access to a locked file region is
subject to the restriction.

Linux implements both mandatory locks and
advisory locks.

An advisory lock is not enforced by the operating
system, which severely diminishes its value from
a security perspective.

29

Linux Mandatory Locks
The mandatory file lock in Linux is impractical for
the following reasons:

Mandatory locking works only on local file
systems and does not extend to network file
systems.
File systems must be mounted with support for
mandatory locking, and this is disabled by default.
Locking relies on the group ID bit, which can be
turned off by another process (thereby defeating
the lock).

30

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

31

File System Exploits 1
Files and directories commonly act as race
objects.

A file is opened, read from or written to, and
closed by separate functions called over a period
of execution time.

File access sequences are fertile regions for race
windows.

Open files are shared by peer threads, and file
systems have exposure to other processes.

32

File System Exploits 2
The exposure comes in the form of

file permissions
file naming conventions
file system mechanisms

Most executing programs leave a file in a
corrupted state whenever the program crashes.

This extreme form of a race condition is an
unavoidable vulnerability and another reason for
data backup.

33

Symbolic Linking Exploits 1
A symbolic link is a directory entry that references
a target file or directory.

A symlink vulnerability involves a programmatic
reference to a file name that unexpectedly turns
out to include a symbolic link.

The most common symlink vulnerability involves a
TOCTOU condition.

34

Symbolic Linking Exploits 2
TOCTOU vulnerabilities include:

a call to access() followed by fopen()
a call to stat() followed by a call to open()
a file that is opened, written, closed, and
reopened by a single thread

Within the race window, the attacker alters the
meaning of the file name by creating a symbolic
link.

35

TOCTOU Vulnerability with stat()
if (stat("/dir/some_file", &statbuf) == -1) {

err(1, "stat");

}

if (statbuf.st_size >= MAX_FILE_SIZE) {

err(2, "file size");

}

if ((fd=open("/dir/some_file", O_RDONLY)) == -1) {

err(3, "open - /dir/some_file");

}

// process file

stats /dir/some_file and opens the
file for reading if it is not too large.

TOCTOU use is the call to fopen()

TOCTOU check occurs
with the call of stat()

36

Exploiting TOCTOU Vulnerability

This vulnerability can be exploited by executing
the following commands during the race window:
rm /dir/some_file
ln -s attacker_file /dir/some_file

The file passed as an argument to stat() is not
the same file that is opened.

The attacker has hijacked /dir/some_file by
linking this name to attacker_file.

37

Symbolic Linking Exploits
Symbolic links are used in exploits because they
can be created even when the owner of the link
lacks permissions to access the target file.

The attacker needs write permissions for the
directory in which the link is created.

Symbolic links can reference a directory. The
attacker might replace /dir with a symbolic link
to a completely different directory.

38

C++ TOCTOU Vulnerability
#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main() {

ofstream outStrm;

ifstream chkStrm;

chkStrm.open("/tmp/some_file", ifstream::in);

if (!chkStrm.fail())

outStrm.open("/tmp/some_file", ofstream::out);

...

}

Time of check

Time of use

Can be exploited by the
creation of a symbolic link,
named /tmp/some_file,
during the race window

39

O_CREAT and O_EXCL
If O_CREAT and O_EXCL are set, open() fails if the file
exists.

The check for the existence of the file and the creation of
the file if it does not exist is atomic with respect to other
threads executing open() naming the same filename in
the same directory with O_EXCL and O_CREAT set.

If O_EXCL and O_CREAT are set, and path names a
symbolic link, open() fails and set errno to [EEXIST],
regardless of the contents of the symbolic link.

If O_EXCL is set and O_CREAT is not set, the result is
undefined.

40

Mitigation for C++ File Open TOCTOU
int main() {

int fd;

FILE *fp;

if ((fd = open("/tmp/some_file",

O_EXCL|O_CREAT|O_TRUNC|O_RDWR, 0600)) == -1) {

err(1, "/tmp/some_file");

}

fp = fdopen(fd, "w");

...
The stream is opened with
a file descriptor and not a
file name.

use of the O_EXCL argument with the
open() function

41

C++ TOCTOU
In pre-standard C++, certain implementations of
<fstream.h> offered the flags ios::nocreate
and ios::noreplace for controlling file creation.

These flags were too platform-specific and never
made it into the standard <fstream> library,
which supersedes the deprecated, pre-standard
<fstream.h> header.

Unfortunately, fstream has no atomic
equivalent, following the deprecation of the
ios::nocreate flag.

42

unlink() Race Exploit

Opening a UNIX file and unlinking it later creates
a race condition.

By replacing the named open file with another file
or symbolic link, an attacker can cause
unlink() to be applied to the wrong file.

This problem can be avoided with proper
permissions on the file’s containing directories.

43

Using realpath() with pathconf()
The pathconf() function can be used to
determine the system-defined limit on the size of
file paths.

This value may then be used to allocate memory
to store the canonicalized path name returned by
realpath()

However, a PATH_MAX value obtained from a
prior pathconf() call is out-of-date by the time
realpath() is called.

44

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

45

Mitigation Strategies
Race-related vulnerabilities can be mitigated by

removing the concurrency property
eliminating the shared object property
controlling access to the shared object to
eliminate the change state property

UNIX and Windows have synchronization
primitives for the implementation of critical
sections within a single multithreaded application.

46

Mutual Exclusion 1
Conflicting race windows should be protected as mutually
exclusive critical sections.

Synchronization primitives capable of implementing
critical sections within a single multithreaded application

mutex variables
semaphores
pipes
named pipes
condition variables
CRITICAL_SECTION objects
lock variables

47

Mutual Exclusion 2
An object-oriented alternative for removing race
conditions relies on the use of decorator modules
to isolate access to shared resources.

This approach requires all access of shared
resources to use wrapper functions that test for
mutual exclusion.

48

Avoiding Deadlock
The standard avoidance strategy for deadlock is to
require that resources be captured in a specific order.

Deadlock is avoided as long as no process may capture
resource rk unless it first has captured all resources rj ,
where j < k.

In a multithreaded application, it is insufficient to ensure
that there are no race conditions within the application’s
own instructions.

It is also possible that invoked functions could be
responsible for race conditions.

49

Use of Atomic Operations
Synchronization primitives rely on operations that are
atomic.

These functions must not be interrupted until they have
run to completion.

EnterCriticalRegion()
pthread_mutex_lock()

If the execution of one call to:
EnterCriticalRegion()

is allowed to overlap with a call from:
LeaveCriticalRegion()

there could be race conditions internal to these functions.

50

Identifying Files 1
UNIX files can often be identified by other attributes
in addition to the file name, such as the file serial
number (i-node) together with the device.

You can store information on a file that you have
created and closed, and then use this information to
validate the identity of the file when you reopen it.

Comparing multiple attributes of the file improves the
probability that you have correctly identified the
appropriate file.

51

Identifying Files 2
The POSIX fstat() function can be used to read
information about the file into the stat structure and
compare it with existing information about the file to
improve identification.

The structure members st_mode, st_ino, st_dev,
st_uid, st_gid, st_atime, st_ctime, and
st_mtime should all have meaningful values for all file
types on POSIX compliant systems.

The st_ino and st_dev structure members, taken
together, uniquely identify the file.

st_ino field contains the file serial number (i-node)
st_dev field identifies the device containing the file

52

Identifying Files 3
struct stat st;

dev_t dev; /* device */

ino_t ino; /* file serial number */

int fd = open(filename, O_RDWR);

if ((fd != -1) && (fstat(fd, &st) != -1) &&

(st.st_ino == ino) && (st.st_dev == dev)

) {

...

}

NOTE: The st_dev value is not necessarily consistent across reboots
or system crashes.

53

Checking File Properties Securely
TOCTOU conditions result from a need to check
file properties.

Linux mitigation is to use open() followed by
fstat().

A Windows mitigation is to use

GetFileInformationByHandle()

rather than

FindFirstFile() or FindFirstFileEx()

54

The lstat() Function

The only Linux stat function to stat a symbolic link
rather than its target

Must be applied to a filename with no file
descriptor alternative

Is useful in guarding against symlink
vulnerabilities

55

Symlink Check with TOCTOU
struct stat lstat_info;

int fd;

if (lstat(fn, &lstat_info) == -1) {

err(1, "lstat");

}

if (!S_ISLNK(lstat_info.st_mode)) {

if ((fd = open(fn, O_EXCL|O_RDWR, 0600)) == -1)

err(2, fn);

}

// process the file

...

This code stats fn, then opens this file
if it is not a symbolic link.

The lstat() followed by the open()
form a TOCTOU condition.

A symbolic link could
have been created
between the calls to
lstat() and open()

56

Symlink Check w/o TOCTOU
One mitigation strategy for calling lstat()

securely is a four-step algorithm:
1. lstat() the file name
2. open() the file
3. fstat() the file descriptor from step 2
4. compare the status from steps 1 and 3 to ensure

that the files are the same

57

Secure Symlink Check
struct stat lstat_info, fstat_info;

int fd;

if (lstat(fn, &lstat_info) == -1)

err(1, "lstat");

if ((fd = open(fn, O_EXCL|O_RDWR, 0600)) == -1)

err(2, fn);

if (fstat(fd, &fstat_info) == -1) err(3, "fstat");

if (lstat_info.st_mode == fstat_info.st_mode &&

lstat_info.st_ino == fstat_info.st_ino &&

lstat_info.st_dev == fstat_info.st_dev)

// process the file

...
Ensures that the file stat-ed is the same
file as the file that is opened

58

Why this Works
fstat() is applied to file descriptors, not file names, so
the file fstat-ed must be identical to the file that was
opened.

lstat() does not follow symbolic links, but fstat()
does.

The mode (st_mode) defines the file type
comparing modes is sufficient to check for a symbolic link
as lstat() will return the link file while will fstat() will
return the referenced file

Comparing i-nodes (st_ino) ensures that the lstat-ed file
has the identical i-node as the fstat-ed file.

59

Eliminating the Race Object
Race conditions exist because some object is
shared by concurrent execution flows.

If the shared object(s) can be eliminated or its
shared access removed, there cannot be a race
vulnerability.

Resources that are capable of maintaining state
are of concern with respect to race conditions.

Any two concurrent execution flows of the same
computer will share access to that computer’s
devices and various system-supplied resources.

60

Know What Is Shared 1
Among the most important, and most vulnerable,
shared resources is the file system.

Windows systems have another key shared
resource in the registry.

System-supplied sharing is easy to overlook
because it is seemingly distant from the domain of
the software.

A program creating a file in one directory may be
impacted by a race condition in a directory several
levels closer to the root.

61

Know What Is Shared 2
A malicious change to a registry key may remove
a privilege required by the software.

Often the best mitigation strategies for system-
shared resources have more to do with system
administration than software engineering.

System resources should be secured with minimal
access permissions.
System security patches should be installed
regularly.

62

Know What Is Shared 3
Programmers should minimize vulnerability exposure by
removing unnecessary use of system-supplied resources.

For example:
The Windows ShellExecute() relies on the registry to
select an application to apply to the file.
It is preferable to call CreateProcess(), explicitly
specifying the application, than to rely on the registry.

Process-level concurrency increases the number of
shared objects slightly.

Concurrent processes inherit global variables and system
memory, including settings such as the current directory
and process permissions, at the time of child process
creation.

63

Descriptor Tables
A vulnerability associated with inheriting open files
is that this may unnecessarily populate the file
descriptor table of a child process.

The unnecessary entries could cause the child’s
file descriptor table to fill, resulting in a denial of
service.

It is best to close all open files, excepting perhaps
stdin, stdout and stderr, before forking child
processes.

64

ptrace() Function
A process that executes ptrace() essentially
has unlimited access to the resources of the trace
target.

This includes access to all memory and register
values.

Avoid the use of ptrace() except for
applications like debugging, in which complete
control over the memory of another process is
essential.

65

Peer Threads 1
Concurrency at the thread level leads to the
greatest amount of sharing and correspondingly
the most opportunity for race objects.

Peer threads share all
system-supplied shared objects
process-supplied shared objects

66

Peer Threads 2
Peer threads also share all

global variables
dynamic memory
system environment variables

To minimize exposure to potential race objects in
threads, limit the use of

global variables
static variables
system environment variables

67

File Descriptors 1
The race object in a file-related race condition is
often not the file but the file’s directory.

A symlink exploit relies on changing the directory
so that the target of a file name has been altered.

A file is not vulnerable to a symlink attack if it is
accessed through its file descriptor and not the
file name’s directory that is the object of the race.

68

File Descriptors 2
Many file-related race conditions can be eliminated by
using:

fchown() rather than chown()
fstat() rather than stat()
fchmod() rather than chmod()

POSIX functions that have no file descriptor counterpart
should be used with caution.

link() and unlink()
mkdir() and rmdir()
mount() and unmount()
lstat()
mknod()
symlink()
utime()

69

Shared Directories
When a group of users have write permission to a
directory, the potential for sharing and deception
is greater than it is for shared access to a few
files.

The vulnerabilities that result from malicious
restructuring via hard and symbolic links suggest
avoiding shared directories.

70

Principle of Least Privilege 1
The principle of least privilege is a wise strategy
for mitigating race conditions as well as other
vulnerabilities.

Race condition attacks involve a strategy where
the attacker performs a function without
permission.

If the process executing a race window is not
more privileged than the attacker, then there is
little to be gained by an exploit.

71

Principle of Least Privilege 2
There are several ways the principle of least
privilege can be applied to mitigate file I/O race
conditions:

Avoid running processes with elevated privileges.
When a process must use elevated privileges,
drop privileges before accessing shared
resources.

72

Static Analysis Tools 1
A static analysis tool analyzes software for race
conditions without actually executing the software.

The tool parses software, sometimes relying on user-
supplied search information.

Static analysis tools report apparent race conditions,
sometimes ranking each reported item according to
perceived risk.

73

Static Analysis Tools 2
Warlock is a static tool for analyzing C programs that relies on
extensive programmer annotations to drive the race condition
identification.

ITS4 is an alternative that uses a database of known vulnerabilities,
including race conditions.

Perceived vulnerabilities are flagged and a severity level is reported.

RacerX performs control-flow-sensitive inter-procedural analysis that
provides coarse-grained detection best suited for large systems.

Among the best known public domain tools are
Flawfinder http://www.dwheeler.com/flawfinder/
RATS http://www.securesw.com/rats

http://www.dwheeler.com/flawfinder/
http://www.securesw.com/rats

74

Static Analysis Tools 3
Extended static checking (ESC) tools perform a
static analysis based on theorem-proving
technology, rather than the compiler-like parsing
of most static tools.

All static analysis algorithms are prone to some
false negatives (vulnerabilities not identified) and
frequent false positives (incorrectly identified
vulnerabilities).

75

Dynamic Analysis 1
Dynamic race detection tools overcome some of the
problems with static tools by integrating detection with the
actual program’s execution.

Analyzing only the actual execution flow has the
additional benefit of producing fewer false positives that
the programmer must consider.

The main disadvantages of dynamic detection are:
fails to consider execution paths not taken
significant runtime overhead

76

Eraser
Eraser is a dynamic tool that intercepts operations
held on runtime locks.

Eraser reports alarms based on the analysis of a
widely accepted algorithm for examining sets of
held locks.

Program annotations are supported to prevent
false positives from recurring in future program
runs.

77

MultiRace - Alcatraz
MultiRace uses an improved version of the lockset
algorithm used by Eraser together with an algorithm
derived from a static detection technique.

This combination is claimed to reduce false positives.
MultiRace also improves on the runtime overhead of
Eraser.

The Alcatraz tool maintains a file modification cache that
isolates the actual file system from unsafe access.

User input is required to commit unsafe file changes.

78

Thread Checker - RaceGuard
Thread Checker performs dynamic analysis for
thread races and deadlocks on both Linux and
Windows C++ code.

RaceGuard is a UNIX kernel extension designed
to provide for secure use of temporary files.

RaceGuard maintains its own cache of processes
and their temporary files.

Execution-time file probes and opens are
intercepted by RaceGuard and aborted if an
attack is detected.

79

Mitigation Strategies
If you are operating:

In someone else's directory, relinquish elevated privileges
– If you are root (or administrator), set your effective user ID to that

of the directory’s owner for file operations in that directory
• assuming that the directory is secured for that user; otherwise, you

may endanger that user’s files
– If you are not root, you may be at risk of attacks against files you

own elsewhere
• don’t operate on files in other user’s directories

In a shared directory such as /tmp, consider using
– a temporary directory inside your home directory
– a secured directory for root or administrator temporary files

80

Agenda
Concurrency

Time of Check, Time of Use

Files as Locks and File Locking

File System Exploits

Mitigation Strategies

Summary

81

Summary 1
Race conditions are subtle, difficult to discover,
and frequently exploitable. Their problem is
concurrency.

Concurrent code is more complex than sequential
code.

It is more difficult to write,
more difficult to comprehend,
more difficult to test.

There are no “silver bullets” when it comes to
avoiding race conditions.

82

Summary 2
The vulnerabilities of race conditions can be
divided into two major groups:

those that are caused by the interactions of the
threads within a multithreaded process
vulnerabilities from concurrent execution outside
the vulnerable software

The primary mitigation strategy for vulnerability to
trusted threads is to eliminate race conditions
using synchronization primitives.

83

Summary 3
Race conditions from untrusted processes are the source
of many well-known file-related vulnerabilities:

symlink vulnerability
various vulnerabilities related to temporary files

Synchronization primitives are of little value for race
vulnerabilities from untrusted processes.

Mitigation requires various strategies designed to
eliminate the presence of shared race objects and/or
carefully restrict access to those race objects.

84

Summary 4
Many tools have been developed for locating race
conditions either statically or dynamically.

Most static tools produce significant numbers of
false positives and false negatives.

Dynamic tools have a large execution-time cost
and are incapable of discovering race conditions
outside the actual execution flow.

Race detection tools have proven their ability to
uncover race conditions even in heavily tested
code.

85

Questions
about
Race
Conditions

© 2008 Carnegie Mellon University

Backup

87

File Descriptors
A per-process unique, non-negative integer used
to identify an open file for the purpose of file
access.

The value of a file descriptor is from zero to
OPEN_MAX.

A process can have no more than OPEN_MAX file
descriptors open simultaneously.

File descriptors may also be used to implement
message catalog descriptors and directory
streams.

88

Open File Description
An open file description is a record of how a process or
group of processes is accessing a file.

A file descriptor is actually just an identifier or handle; it
does not actually describe anything.

Each file descriptor refers to exactly one open file
description, but an open file description can be referred to
by more than one file descriptor.

Attributes of an open file description include
file offset
file status
file access modes

89

Independent Opens of the Same File

3: Password file

Open File Description
Access mode: read
File offset: 0x0

5: Password file

Open File Description
Access mode: r/w
File offset: 0x33

ID: 0x52
Permissions: 0644
Owner: root
Group: wheel

File descriptor table

System file table

Process 2000 Process 3200

I-node

	Secure Coding in C and C++�Race Conditions
	Agenda
	Concurrency
	Race Conditions
	Race Condition Properties
	Eliminating Race Conditions
	Mutual Exclusion
	Synchronization Primitives
	Deadlock
	Exploiting Deadlock 1
	Exploiting Deadlock 2
	Agenda
	Trusted/Untrusted Control Flows
	Multitasking Systems w/ Shared Resources
	Linux TOCTOU Example
	TOCTOU Exploit 1
	TOCTOU Exploit 2
	Race Condition (GNU File Utilities v4.1)
	Agenda
	Files as Locks and File Locking
	Simple File Locking in Linux
	Simple File Lock Function
	Disadvantages of File Locking
	Solution for Removing Lock Files
	Windows Synchronizing Processes
	File Locks
	Windows File Locks
	Mandatory vs. Advisory Locks
	Linux Mandatory Locks
	Agenda
	File System Exploits 1
	File System Exploits 2
	Symbolic Linking Exploits 1
	Symbolic Linking Exploits 2
	TOCTOU Vulnerability with stat()
	Exploiting TOCTOU Vulnerability
	Symbolic Linking Exploits
	C++ TOCTOU Vulnerability
	O_CREAT and O_EXCL
	Mitigation for C++ File Open TOCTOU
	C++ TOCTOU
	unlink() Race Exploit
	Using realpath() with pathconf()
	Agenda
	Mitigation Strategies
	Mutual Exclusion 1
	Mutual Exclusion 2
	Avoiding Deadlock
	Use of Atomic Operations
	Identifying Files 1
	Identifying Files 2
	Identifying Files 3
	Checking File Properties Securely
	The lstat() Function
	Symlink Check with TOCTOU
	Symlink Check w/o TOCTOU
	Secure Symlink Check
	Why this Works
	Eliminating the Race Object
	Know What Is Shared 1
	Know What Is Shared 2
	Know What Is Shared 3
	Descriptor Tables
	ptrace() Function
	Peer Threads 1
	Peer Threads 2
	File Descriptors 1
	File Descriptors 2
	Shared Directories
	Principle of Least Privilege 1
	Principle of Least Privilege 2
	Static Analysis Tools 1
	Static Analysis Tools 2
	Static Analysis Tools 3
	Dynamic Analysis 1
	Eraser
	MultiRace - Alcatraz
	Thread Checker - RaceGuard
	Mitigation Strategies
	Agenda
	Summary 1
	Summary 2
	Summary 3
	Summary 4
	Questions�about�Race Conditions
	Backup
	File Descriptors
	Open File Description
	Independent Opens of the Same File

