Lecture 2:

Basic
PPP authentication mechanisms

PAP, CHAP, +++

Recommended reading:
RFC 1334, October 1992;
RFC 1994, August 1996
Wiley AAA book, chapter 2 (parts)

Giuseppe Bianchi

Authentication in PPP

= Optional phase
= After link establishment
=after or during link quality determination (if present)

= Authentication mechanism
negotiated during link establishment

= Option sent in configuration request PPP msg

Giuseppe Bianchi

Basic PPP authentication

= LCP option #3 = authentication protocol

Specific extra info needed

Type Length Auth-protocol data .
1 }t;[;/te 1 bﬁ’te 2 Eyte 0+ bytes to the considered auth
03 >=4 c023=PAP, c223=CHAP| . pI’OtOCO|

= Two basic authentication mechanisms

initially considered
= PAP: Password Authentication Protocol

Type Length Auth-protocol)
lbyte | 1byte 2 byte No extra info
03 04 c023=PAP

= CHAP: Challenge Handshake Authentication Protocol

Type Length Auth-protocol data . .
lbyte | 1byte 2 byte 1 byte Extra info: Hash Function
03 05 c223=CHAP 05=MD5 Basic = MD5

Giuseppe Bianchi

Auth direction

= Independently done on both directions!
= Authentication may differ
= or may apply to a single direction only
->Typically NAS requires user to authenticate
—>User does not require NAS to authenticate

= Authenticator = the end of the link that requires the
other peer to perform authentication

= Authenticator: sends the Configure-Request, specifying
the authentication protocol to be used

= Both sides act in turn as authenticators in the case of mutual authentication
i

< Configure-Request (auth protocol = XXX) |

| Configure-Ack (auth protocol = XXX) >

< user will AUTH with XXX against NAS

Giuseppe Bianchi

PAP
Password Authentication Protocol

Giuseppe Bianchi

Password Authentication Protocol

=> Simplest possible mechanism

= Based on the a-priori knowledge, by the authenticator, of the
(user_id, password) pair specified during contractual agreement

= Two-way handshake

Remote f\
User

Authenticate-Request
(User_ID,Passwd)

Authenticator

User Database

Authenticate-Ack
Authenticate-Nak

UID |passwd

Giuseppe Bianchi

PAP procedure

=>»Starts when link is established

= Authenticating peer repeatedly sends
Id/Password pair, until:

= An ACK is received

= A NACK is received and/or the connection is
terminated

= PAP is a weak authentication method
= Passwords sent “in clear”
=No protection from playback

=No protection from repeated trial and error attacks

—>Peer is in control of the frequency and timing of
the attempts.

Giuseppe Bianchi

PAP Authentication Protocol option

Type Length | Authentication-protocol There is po data field
03 04 C023 (PAP) In the option

User (557] I NAS
Configure-Request (auth protocol option 03=PAP) |
| Configure-Ack (auth protocol option 03=PAP) >

Giuseppe Bianchi

PAP packet format: auth-request

NAS

| PAP Authenticate-Request (code 1) >’

To match request/reply

&
fEStZ Identifier Length ID len ID PWlen PW
o1 1 byte 2 bytes 1 byte| *** 1 byte| *=*
~~ = P
=~ ~o e
~— ~ - V4
Addresg Control Protocol .
Flag 11111111/0000001 0xC023 (PAP) Information FCS Flag

Giuseppe Bianchi

Auth-request example

(real capture)

P)
A 4

... €023/01 09 00 2 5 75 32 35 36 33 36 37 38 40 74 65 6¢ 65 32 2e 69 7?39 6477 63 2d 75 6a 6e
eu2563678@tele2.it 9dwc -ujn

PAP

Code 01 |D=09\ Userid=18 bytes Password = 8 bytes

Auth-req

Len=32 bytes (0x0020)

ALL UID+PW IN CLEAR!!!

Giuseppe Bianchi

PAP packet format: auth-Ack/Nak

NAS

| PAP Authenticate-Request (code 1) >’

To match request/reply
Message field: 0+ bytes

Code | ?'f Lenath Visq | its contents are
entifier eng sg len msg Implementation- ndent
_lbyte 1 byte 2 bytes 1 byte e plementation-depende
=2 or 03 Intended to be
TS~ » human readable (ASCII)
SN~ - 7
~— ~ - V4

Addresgy Control Protocol .
Flag 11111111/0000001 0xC023 (PAP) Information FCS Flag

Giuseppe Bianchi

CHAP
Challenge Handshake
Authentication Protocol

Giuseppe Bianchi

Approach

= Three-way handshake
= Challenge — Response — Success or Failure

> Uses a Random Challenge, with a
cryptographically hashed Response
which depends upon the Challenge
and a secret key

=>Secret key never transmitted in clear
=Much more safer than PAP

= Conceptually identical to the
approach currently adopted into
actual cellular networks

=GSM, UMTS

Giuseppe Bianchi

Three-way handshake

2) Username,Hash(Challenge+Pw+...)

Authenticator
Remote
User

: 1) Challenge i

3) Success, Failure

Three-way handshake performed initially, after link establishment
But it MAY be repeated ANYTIME at RANDOM TIMES after the link is established
With new (different) challenges!!

Giuseppe Bianchi

CHAP pros & cons

=>Pros:
= Protection against playback attack
—>Incrementally changing identifier
—>Variable challenge value
= Repeated challenges

—>Authentication may be repeated over connection (uméike
PAP where it is performed only once at start)

—intended to limit the time of exposure to any singttack
= Authenticator controls frequency and timing of the challenges

—>CHAP does not allow a peer to attempt authentinatithout a
challenge

= Cons:
= Secret must be available in plaintext form
—>Cannot use irreversibly encrypted password database
= Hard scalability in large installations
—>every possible secret must be maintained at bath efithe link

Giuseppe Bianchi

CHAP selection

Similar to PAP: during configure-Request

Type Length | Authentication-protocol | algorithm
03 05 C223 (CHAP) 05 (MD5)

/ﬁl NAS
|

Configure-Request (auth protocol option 03=CHAP)
| Configure-Ack (auth protocol option 03=CHAP) >

The only required hashing algorithm, in a conforming implementation, is MD5
(but CHAP protocol open to other possible hashing algorithms as well)

Giuseppe Bianchi

CHAP Challenge

= Identifier: MUST change at each new challenge
= Value: randomly generated - must be designed to be
= Unique & different per each challenge

-> To avoid replay attacks

= Not predictable
= Value size: 1+ bytes

-> In principle arbitrary and independent of the hagtalgorithm used

= Name field: identification of the system transmitting the

packet

Code | Identifier Length Ch.Ler| Challenge| Name

1 byte 1 byte 2 bytes 1 byte| hx il

01

PPP Chal | enge Handshake Aut hentication Protocol (REAL TRACE EXAMPLE)

Code: 0x 01 (Chall enge)
Identiftier: 0x 01
Lengt h: Ox 00 1f (31 bytes)
Val ue Size: Ox 10 (16 bytes)
Val ue: Ox 07 21 c9 b3 30 a6 f8 6f 52 ff 67 7f 07 3d 15 f5
Nane: M LZ-LNS-9 (10 bytes)

Giuseppe Bianchi

= One-Way Hash function

Response computation

: - . “secret” size:
= Transform an arbitrary text size into an alphanumeric sequence of - At least 1 byte
given size (digest) - Typically more
= MDS5 digest = 16 bytes (a “normal”
= Response value: one-way hash calculated over: password)
= |dentifier, concatenated with the “secret”, concatenated with the - Preferable: at
challenge value least 16 bytes (MD5
digest size
|identifier| + | Secret key |+ | Challenge | |l~ AgjkY9FgjKhx
Original text One-way Hash Digest
Code | Identifier Length Val len| Value Name
1 byte 1 byte 2 bytes 1 byte| *=* b
02
PPP Chal | enge Handshake Aut hentication Protocol (REAL TRACE EXAMPLE)
Code: 0x 02 (Chall enge)
Identifier: 0x 01
Lengt h: Ox 00 27 (39 bytes)
Val ue Size: Ox 10 (16 bytes)
Val ue: Ox 4b 70 76 ¢3 2a b5 21 10 29 9b 25 72 06 Oa e4 ae
Nane: eu2563678@el e2.it (18 bytes)

Giuseppe Bianchi

Success/Failure

= Authenticator in turn computes the digest
= It has identifier, challenge, and the secret key
- In fact there is the user id repeated in the “nafigdd (password from DB lookup)
= And compares with that received
= If OK, send back Success (Code 03)
= If NO, send back Failure (Code 04) and terminate link
= Message: optional field, intended for human

Code | Identifier Length Message
1 byte 1 byte 2 bytes il
03 or 04

PPP Chal | enge Handshake Authentication Protocol (REAL TRACE EXAMPLE)

Code: 0x 03 (Chal |l enge)
Identifier: 0x 01
Lengt h: Ox 00 04 (4 bytes)

[no message in the considered innpl enmentation!]

Giuseppe Bianchi

Password based Authentication:
Extensions

Giuseppe Bianchi

10

Passwd protection in DB?

RemOte(\ Authenticator
User
1) UID, passwd
@a User Database
d

2) Ack/Nack RN v >

(UID |passwd

Passwd DB in clear...
Significant vulnerability!

Giuseppe Bianchi

Passwd protection in DB:
storing passwd hashes!

Remote(\ Authenticator
User
a 1) UID, passwd
;

2) Ack/Nack

User Database

UID | H(passwd)

Authenticator:
1) receives UID & passwd (clear text)
2) computes hash H(passwd) - any locally used Hash OK; Linux = MD5
3) compares with DB entry

Giuseppe Bianchi

11

Dictionary attack...

=>Many users use predictable
passwd

= Dictionary attack:
=Hashing does not help
=Will see in a dedicated laboratory!

Giuseppe Bianchi

One-time passwd

=>1Is it possible to extend PAP so
that user changes passwd at
every (successful) attempt?

=If it is, would prevent playback attacks

UID="Flavia”, passwd="087654" >

3 w |

@| UID="Flavia”, passwd="087654" >
< NO!! |

Giuseppe Bianchi

12

One-time passwd: trivial... but...

User Database

) 08;(;54

| UID="Flavia", passwd="087654" >

Flavia
123567

< oK |

>N (large) passwd per user
=>10.000.000++ users
= HUGE DB!! Not viable

Giuseppe Bianchi

Idea: hash chains

One way hash

05643228 35426765

! !

Given this value, you can But given this value, you cannot
trivially compute next one compute previous one

P[0] = starting point
P[i] = H(P[i-1])
P[N] = last value

Giuseppe Bianchi

13

One-time passwd: practical

Compute Compute & store
P[0]...P[N] Flavia > P[N+1]

——— - If H(P[N])==P[N+1]
| UID=“Flavia”, passwd= P[N] > OK; store PN]
| UID="Flavia”, passwd= P[N-1]
""""" Stored PJi]

| UID="Flavia”, passwd= Pli-1] > If H(P[i-1])==P[i]
OK; store P[i-1]

Giuseppe Bianchi

One-time passwd benefits

=2 Passwd in clear = OK

= Authenticator only stores USED
passwd

=no way to predict next one (1-way hash)
= Authenticator only stores 1 value
= Same complexity as in ordinary PAP

= Issues:
=Large N to prevent frequent renegotiation

=(Client size = vulnerable (must store passwd seed or
whole vector)

Giuseppe Bianchi

14

Issues with CHAP

Giuseppe Bianchi

Basic CHAP vulnerability

CHALLENGE = 135623

PN

RESPONSE = Flavia, H(id | mypass | 13562>

<ACK or NACK

= Authenticator MUST store passwd in
clear!

= Otherways no way to compute H(id, pw, challenge)

= Authenticator storage = straightforward
target for attack!

= Even worse than PAP!!

User Database

flavia

mypass

Giuseppe Bianchi

15

<c

Idea: “salt”

HALLENGE = 135623; SALT = 9876

RESPONSE = Flavia, H(id | H(9876,mypass) | 135623) >

=> Attacker may only access to
“salted” passwd

= Different salt for different authenticator

servers

—>breaking one != breaking all
= Refresh DB periodically

<ACK or NACK

User Database: SALT=9876

flavia

H(9876,mypass)

->Someone must take care of this... more later

SALT: Same idea can be used also in PAP (of course)

Giuseppe Bianchi

CHAP and mutual authentication /1

%

D=2; CHALLENGE = 135623

RESP: Flavia, H(ID=2, sharedsecret, 135623) >

<ACK

ID=3; CHALLENGE = 324567

)

<RESP: servername, H(ID=3, sharedsecret, 324567)

ACK

)

Giuseppe Bianchi

Usage of a shared
Secret... good idea,
Easy to manage!

Good idea??

16

CHAP and mutual authentication /2
Reflection attack

<|D=z; CHALLENGE = 135623

ID=2; CHALLENGE = 135623 >

\ <RESP: servername, H(ID=2, sharedsecret, 135623)

VERY risky!l.
ACK > Attacker:

—>accept computed resp

RESP: client, H(ID=2, sharedsecret, 135623) >

<ACK Without any info on
real client !!

—>replays server challenge

—>uses resp to authenticate!!

Giuseppe Bianchi

Mutual authentication with
Challenge-Response

(just some hints... no full analysis)

Giuseppe Bianchi

17

Basic idea

Boss, C1

Flavia, C2, H(secret, C1)

:>C1!=CZ

Boss, H(secret, C2)

Flavia shows knowledge

of secret over C of secret over C2

Boss shows knowledge

Giuseppe Bianchi

Reflection!

= Does not work

< Boss, C1

Flavia, C2, H(secret, C1)

:>C1 1=C2

< Boss, C2

Flavia, C3, (secret@

>

v

< Boss, H(secret, C2)

o

Giuseppe Bianchi

18

What if reflection is prevented by

protocol status?

= Attacker may use “other” party!

Boss, C1

<

Flavia, C2, H(secret, C1)

Flavia, C2 >

< Boss, C3(H(secret, C2)

4—/

< Boss, H(secret, C2)

Giuseppe Bianchi

Let’s try to fix this

Boss, C1

<

Flavia, C2,H(secret, C1, C2) >

<

Boss, C3, H(secret, C2, C3)

Chaining challenges! Add dependency
between challenges in same handshake

Giuseppe Bianchi

19

Does not work

Boss, C1
Flavia, C2,H(secret, C1, @ >
Boss, C2

Flavia, C3,{H(secret, C2, @ >

Boss, C3, H(secret, C2, C3)

<

Too many nonces!!

s
/

Giuseppe Bianchi

Minimize nonces

Boss, C1

Flavia, C2,H(secret, C1, C2)

Same challenges, but different values (order!)

Boss,(s@t, C2, @

<

No reflection possible anymore

Giuseppe Bianchi

20

Challenge-Response
in GSM authentication

Giuseppe Bianchi

GSM essential components

Radio Access Visited Home
Network Central Office Central Office
ss7
Network
- HLR/AuC
! §
EIR
MSC/VLR
PSTN
Network

— Data path

Signaling
BSC: Base Station Controller
SIM: Subscriber Identity Module

MSC: Mobile Switching Center
EIR: Equipment Identity Register

MS: Mobile System

HLR: Home Location Register
VLR: Visiting Location Register
AuC: Authentication Center
BTS: Base Transceiver Station

Giuseppe Bianchi

21

Authentication: when

MS BSS/MSC VLR HLR AUC
Loc. Upd. Request
» Update Loc. Area
IMSI, LAl 7 P »| Auth. Param. Reg] Auth. Info. Req.
IMSI, LAI } R
IMSI IMSI
Auth. Info Auth. Info

(Auth. Parameters) | (Auth. Parameters)

authentication

Update Location
Start Cipherin IMSI, MSRN ©
L Kc Insert Subscrib. Daja

clivate Forward new TMSI[IMSI, additional datg

C|pher|ng TMSI Insert Subscrib. Dal

ACK e
Locat. Upd. Accep

IMSI

D

Locat. Upd. Accept

TMSI Realloc Cmd

Locat. Upd. Accept
TMSI Realloc ACK

TMSI ACK

Giuseppe Bianchi

Authentication
(managed by VLR)

Iii RAl\l D

-—
HLR/
Authentication Request AUC
< VLR
MS / Challenge: 128 bit RAND

A3 SRES

!
SRES Authentication Response

Sgned RESUIt: 32 bit SRES

Iii RAl\l D

A8

I
Kc

Giuseppe Bianchi

22

Triplets (Authentication Vector)

>
‘..'l IMSI
HLR/
VLR AUC
<RAND, SRES,Kc>xN |

Home operator
Visited operator P

= Idea: once in a VLR area, autentication will
need to be performed MANY times

= Hence deliver N triplets, to be used for N
distinct authentications

= IMPORTANT: VLR does NOT need to know
authentication algo used (A3, AS8)

= Triplet contains computed result by AuC
= A3, A8 run inside the SIM (given by operator)

Giuseppe Bianchi

Authentication: details

Ki RAND
128 bit secret 128 bit challenge
+ v
A38 = A3 and A8 at same time
! !
SRES Kc
32 bit 64 bits (well, 54 + ten 0s)

Deliberately weak?

= Challenge response with:

=Challenge - RAND
= Secret -2 Ki
=Hash —> A3 algorithm

Giuseppe Bianchi

23

On the A3/AS8 algorithms

=> Security by obscurity
= A3 algorithm CAN BE operator-specific!
= But most vendors originally used algo today called COMP128
= Non disclosed but...
->Reverse engineered? Leaked out?
= COMP128 broken in 1998
- http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html

= Chosen challenge attack [1998, Briceno, Goldberg, Wagner]

->Ki disclosed through about 150.000 queries withadly
selected challenge$ approx 8h in 1998

->Having Ki means cloning the card!

= Better attack [2002, Rao, Rohatgi, Scherzer, Tinguely]
- Less than 1 minute!

= Lesson learned:

= Security by obscurity does NOT work!! Leave hash design to
crypto experts

Giuseppe Bianchi

Over the air attach

= No mutual authentication!

>Rogue BTS may easily perform
the attach

=run it for sufficient time

Giuseppe Bianchi

24

UMTS authentication: AKA
Authentication and Key Agreement

(Simplified for our purposes)

Giuseppe Bianchi

Major differences with GSM

= Mutual authentication!

= Optimized...

= Guaranteed freshness for auth parameters
=>More comprehensive security

=More keys and several extra details
->(we will not focus on this)
> Algorithms FIRST scrutinized by
research community, THEN selected

=The opposite of security by obscurity ©

Giuseppe Bianchi

25

MS

Authentication Vector

C_
| IMSI
HLR/
VLR AUC
< N x Auth Vector |
|

RAND, AUTN

< Authentication Vector:
Auth - XRES (expected result) as GSM SRES
etwor - RAND as GSM RAND
| RES > - AUTN (Netw. Auth. token) ---

- CK (cipher key) as GSM Kc
- IK (integrity key) ---

Giuseppe Bianchi

MS authentication

=>Usual challenge response, but
different (public) algorithm

K RAND K RAND K RAND
{ { { { $ $
f2 f3 f4
! ! Il
RES CK IK
32-128 hit Cipher key Integrity Key
128 bit 128 bit

Giuseppe Bianchi

26

Network Authentication

= MS should send a nonce...
=1 extra message

>Bright idea: use Sequence number as
“implicit” nonce!
=lssue: MS and AuC must be (approx) synchronized
= And robust procedures for resync must be specified

MS C <

HLR/

/ VLR
SQN-MS

SON < SQN-HE

Giuseppe Bianchi

SEQ as nonce: idea

Current SQN-MS
stored

Check
SQN = SQN-MS+1
(or in appropriate
Tolerance range to
come with lost msg)

Use SQN as
“implicit” challenge!!

SQN (included in AUTN)

Once auth OK, update local SQN

Giuseppe Bianchi

27

Network authentication:

AUTN format

SQN
Sequence number

AMF
Auth & key mgmt field

MAC-A
Message Auth code

16 bit: carries info on
which algo or key to

48 bit

64 bit: allows MS to
verify authenticity of

use if choice abailable Network!
(signalling info)
K SQN AMF RAND
{ { { {
MS: has all info needed to check f1
that MAC-A transmitted by network 1
is the same of MAC-A locally computed! MAC-A
SQN guarantees defense against replay 64 bit

Giuseppe Bianchi

Minor detail: protecting SGN!

=> A privacy problem:

=By looking at SQN (stepwise increasing), eavesdropper may

discriminate and track user!

=> Solution: mask SGQN with Anonymity Key

SQN xor AK
Sequence number

AMF
Auth & key mgmt field

MAC-A
Message Auth code

K RAND
4 4

f5
!
AK
Anonymity Key
48 bit

Giuseppe Bianchi

28

