
1

Giuseppe Bianchi

Lecture 2:Lecture 2:

Basic Basic

PPP authentication mechanismsPPP authentication mechanisms

PAP, CHAP, +++PAP, CHAP, +++

Recommended reading:

RFC 1334, October 1992;

RFC 1994, August 1996

Wiley AAA book, chapter 2 (parts)

Giuseppe Bianchi

Authentication in PPPAuthentication in PPP

�Optional phase

�After link establishment

�after or during link quality determination (if present)

�Authentication mechanism
negotiated during link establishment

�Option sent in configuration request PPP msg

2

Giuseppe Bianchi

Basic PPP authentication Basic PPP authentication

�LCP option #3 = authentication protocol

�Two basic authentication mechanisms
initially considered
�PAP: Password Authentication Protocol

�CHAP: Challenge Handshake Authentication Protocol

Type
1 byte

03

Length
1 byte
>=4

Auth-protocol
2 byte

c023=PAP, c223=CHAP

data
0+ bytes

…

Specific extra info needed

to the considered auth

protocol

Type
1 byte

03

Length
1 byte

04

Auth-protocol
2 byte

c023=PAP
No extra info

Type
1 byte

03

Length
1 byte

05

Auth-protocol
2 byte

c223=CHAP

data
1 byte

05=MD5

Extra info: Hash Function

Basic = MD5

Giuseppe Bianchi

Auth directionAuth direction
� Independently done on both directions!

� Authentication may differ

� or may apply to a single direction only
�Typically NAS requires user to authenticate
�User does not require NAS to authenticate

� Authenticator = the end of the link that requires the
other peer to perform authentication

� Authenticator: sends the Configure-Request, specifying
the authentication protocol to be used
� Both sides act in turn as authenticators in the case of mutual authentication

User NAS

Configure-Ack (auth protocol = XXX)

Configure-Request (auth protocol = XXX)

user will AUTH with XXX against NAS

Authenticator

3

Giuseppe Bianchi

PAP PAP
Password Authentication ProtocolPassword Authentication Protocol

Giuseppe Bianchi

Password Authentication ProtocolPassword Authentication Protocol

�Simplest possible mechanism

�Based on the a-priori knowledge, by the authenticator, of the
(user_id, password) pair specified during contractual agreement

�Two-way handshake

Authenticate-Request
(User_ID,Passwd)

Authenticate-Ack
Authenticate-Nak

Remote
User

Authenticator

User Database

… …
UID passwd

… …

4

Giuseppe Bianchi

PAP procedurePAP procedure

�Starts when link is established
�Authenticating peer repeatedly sends

Id/Password pair, until:
�An ACK is received

�A NACK is received and/or the connection is
terminated

�PAP is a weak authentication method
�Passwords sent “in clear”

�No protection from playback

�No protection from repeated trial and error attacks
�Peer is in control of the frequency and timing of

the attempts.

Giuseppe Bianchi

PAP Authentication Protocol optionPAP Authentication Protocol option

User NAS

Configure-Ack (auth protocol option 03=PAP)

Configure-Request (auth protocol option 03=PAP)

Type
03

Length
04

Authentication-protocol
C023 (PAP)

There is no data field

In the option

5

Giuseppe Bianchi

PAP packet format: authPAP packet format: auth--requestrequest
User NAS

PAP Authenticate-Ack (code 2)

or

PAP Authenticate-Nak (code 3)

PAP Authenticate-Request (code 1)

Flag
Address
11111111

Control
00000011

Protocol
0xC023 (PAP)

Information FCS Flag

Code
1 byte

01

Identifier
1 byte

Length
2 bytes

ID len
1 byte

To match request/reply

ID

PW len
1 byte

PW

Giuseppe Bianchi

AuthAuth--request example request example
(real capture)(real capture)

… c0 23 01 09 00 20 12 65 75 32 35 36 33 36 37 38 40 74 65 6c 65 32 2e 69 74 08 39 64 77 63 2d 75 6a 6e

PAP

Code 01

Auth-req
ID=09

Len=32 bytes (0x0020)

User id = 18 bytes

e u 2 5 6 3 6 7 8 @ t e l e 2 . i t

Password = 8 bytes

9 d w c - u j n

ALL UID+PW IN CLEAR!!!!

6

Giuseppe Bianchi

PAP packet format: authPAP packet format: auth--Ack/NakAck/Nak
User NAS

PAP Authenticate-Ack (code 2)

or

PAP Authenticate-Nak (code 3)

PAP Authenticate-Request (code 1)

Flag
Address
11111111

Control
00000011

Protocol
0xC023 (PAP)

Information FCS Flag

Code
1 byte

=2 or 03

Identifier
1 byte

Length
2 bytes

Msg len
1 byte

To match request/reply

msg

Message field: 0+ bytes
its contents are
Implementation-dependent
Intended to be
human readable (ASCII)

Giuseppe Bianchi

CHAP CHAP
Challenge HandshakeChallenge Handshake

Authentication ProtocolAuthentication Protocol

7

Giuseppe Bianchi

ApproachApproach

�Three-way handshake

�Challenge – Response – Success or Failure

�Uses a Random Challenge, with a
cryptographically hashed Response
which depends upon the Challenge
and a secret key

�Secret key never transmitted in clear

�Much more safer than PAP

�Conceptually identical to the
approach currently adopted into
actual cellular networks

�GSM, UMTS

Giuseppe Bianchi

ThreeThree--way handshakeway handshake

2) Username,Hash(Challenge+Pw+…)

3) Success, Failure

1) Challenge

Remote
User

Authenticator

Three-way handshake performed initially, after link establishment

But it MAY be repeated ANYTIME at RANDOM TIMES after the link is established

With new (different) challenges!!

8

Giuseppe Bianchi

CHAP pros & consCHAP pros & cons
�Pros:

�Protection against playback attack
�Incrementally changing identifier
�Variable challenge value

�Repeated challenges
�Authentication may be repeated over connection time (unlike

PAP where it is performed only once at start)
�intended to limit the time of exposure to any single attack

�Authenticator controls frequency and timing of the challenges
�CHAP does not allow a peer to attempt authentication without a

challenge

�Cons:
�Secret must be available in plaintext form

�Cannot use irreversibly encrypted password databases

�Hard scalability in large installations
�every possible secret must be maintained at both ends of the link

Giuseppe Bianchi

CHAP selectionCHAP selection

User NAS

Configure-Ack (auth protocol option 03=CHAP)

Configure-Request (auth protocol option 03=CHAP)

Type
03

Length
05

Authentication-protocol
C223 (CHAP)

Similar to PAP: during configure-Request

algorithm
05 (MD5)

The only required hashing algorithm, in a conforming implementation, is MD5

(but CHAP protocol open to other possible hashing algorithms as well)

9

Giuseppe Bianchi

CHAP ChallengeCHAP Challenge
� Identifier: MUST change at each new challenge
� Value: randomly generated - must be designed to be

� Unique & different per each challenge
�To avoid replay attacks

� Not predictable

� Value size: 1+ bytes
� In principle arbitrary and independent of the hashing algorithm used

� Name field: identification of the system transmitting the
packet

Code
1 byte

01

Identifier
1 byte

Length
2 bytes

Ch.Len
1 byte

Challenge

Name

PPP Challenge Handshake Authentication Protocol (REAL TRACE EXAMPLE)
Code: 0x 01 (Challenge)
Identifier: 0x 01
Length: 0x 00 1f (31 bytes)
Value Size: 0x 10 (16 bytes)
Value: 0x 07 21 c9 b3 30 a6 f8 6f 52 ff 67 7f 07 3d 15 f5
Name: MILZ-LNS-9 (10 bytes)

Giuseppe Bianchi

Response computationResponse computation
� One-Way Hash function

� Transform an arbitrary text size into an alphanumeric sequence of
given size (digest)

� MD5 digest = 16 bytes
� Response value: one-way hash calculated over:

� Identifier, concatenated with the “secret”, concatenated with the
challenge value

Original text DigestOne-way Hash

AgjkY9FgjKhxidentifier Secret key Challenge+ +

Code
1 byte

02

Identifier
1 byte

Length
2 bytes

Val len
1 byte

Value

Name

PPP Challenge Handshake Authentication Protocol (REAL TRACE EXAMPLE)
Code: 0x 02 (Challenge)
Identifier: 0x 01
Length: 0x 00 27 (39 bytes)
Value Size: 0x 10 (16 bytes)
Value: 0x 4b 70 76 c3 2a b5 21 f0 29 9b 25 72 06 0a e4 ae
Name: eu2563678@tele2.it (18 bytes)

“secret” size:

�At least 1 byte
� Typically more
(a “normal”
password)
� Preferable: at
least 16 bytes (MD5
digest size)

10

Giuseppe Bianchi

Success/FailureSuccess/Failure

� Authenticator in turn computes the digest
� It has identifier, challenge, and the secret key
� In fact there is the user id repeated in the “name” field (password from DB lookup)

� And compares with that received
� If OK, send back Success (Code 03)

� If NO, send back Failure (Code 04) and terminate link
� Message: optional field, intended for human

Code
1 byte

03 or 04

Identifier
1 byte

Length
2 bytes

Message

PPP Challenge Handshake Authentication Protocol (REAL TRACE EXAMPLE)
Code: 0x 03 (Challenge)
Identifier: 0x 01
Length: 0x 00 04 (4 bytes)

[no message in the considered inmplementation!]

Giuseppe Bianchi

Password based Authentication:Password based Authentication:
ExtensionsExtensions

11

Giuseppe Bianchi

Passwd protection in DB?Passwd protection in DB?

1) UID, passwd

2) Ack/Nack

Remote
User

Authenticator

User Database

… …
UID passwd

… …

Passwd DB in clear…

Significant vulnerability!

Giuseppe Bianchi

Passwd protection in DB: Passwd protection in DB:
storing passwd hashes!storing passwd hashes!

1) UID, passwd

2) Ack/Nack

Remote
User

Authenticator

User Database

… …
UID H(passwd)

… …

Authenticator:

1) receives UID & passwd (clear text)

2) computes hash H(passwd) - any locally used Hash OK; Linux = MD5

3) compares with DB entry

12

Giuseppe Bianchi

Dictionary attack…Dictionary attack…

�Many users use predictable
passwd

�Dictionary attack:

�Hashing does not help

�Will see in a dedicated laboratory!

Giuseppe Bianchi

OneOne--time passwdtime passwd

�Is it possible to extend PAP so
that user changes passwd at
every (successful) attempt?

�If it is, would prevent playback attacks

UID=“Flavia”, passwd=“087654”

OK

UID=“Flavia”, passwd=“087654”

NO!!

13

Giuseppe Bianchi

OneOne--time passwd: trivial… but…time passwd: trivial… but…

UID=“Flavia”, passwd=“087654”

OK

User Database

… …

Flavia

…

… …

087654

123567

…

�N (large) passwd per user
�10.000.000++ users
�HUGE DB!! Not viable

Giuseppe Bianchi

Idea: hash chainsIdea: hash chains

05643228
One way hash

35426765

Given this value, you can

trivially compute next one
But given this value, you cannot

compute previous one

P[0] = starting point

P[i] = H(P[i-1])

P[N] = last value

14

Giuseppe Bianchi

OneOne--time passwd: practicaltime passwd: practical

P[0]

offline

Compute

P[0]…P[N]
Compute & store

Flavia � P[N+1]

UID=“Flavia”, passwd= P[N]
If H(P[N])==P[N+1]

OK; store P[N]
UID=“Flavia”, passwd= P[N-1]

… … …

UID=“Flavia”, passwd= P[i-1]
Stored P[i]

If H(P[i-1])==P[i]

OK; store P[i-1]

Giuseppe Bianchi

OneOne--time passwd benefitstime passwd benefits

�Passwd in clear = OK
�Authenticator only stores USED

passwd
�no way to predict next one (1-way hash)

�Authenticator only stores 1 value
�Same complexity as in ordinary PAP

�Issues:
�Large N to prevent frequent renegotiation

�Client size = vulnerable (must store passwd seed or
whole vector)

15

Giuseppe Bianchi

Issues with CHAPIssues with CHAP

Giuseppe Bianchi

Basic CHAP vulnerabilityBasic CHAP vulnerability

� Authenticator MUST store passwd in
clear!
� Otherways no way to compute H(id, pw, challenge)

� Authenticator storage = straightforward
target for attack!
� Even worse than PAP!!

CHALLENGE = 135623

RESPONSE = Flavia, H(id | mypass | 135623)

ACK or NACK

User Database

… …
flavia mypass

… …

16

Giuseppe Bianchi

Idea: “salt”Idea: “salt”

CHALLENGE = 135623; SALT = 9876

RESPONSE = Flavia, H(id | H(9876,mypass) | 135623)

ACK or NACK

User Database: SALT=9876

… …
flavia H(9876,mypass)

… …

�Attacker may only access to
“salted” passwd
�Different salt for different authenticator

servers
�breaking one != breaking all

�Refresh DB periodically
�Someone must take care of this… more later

SALT: Same idea can be used also in PAP (of course)

Giuseppe Bianchi

CHAP and mutual authentication /1CHAP and mutual authentication /1

ID=2; CHALLENGE = 135623

RESP: Flavia, H(ID=2, sharedsecret, 135623)

ACK

ID=3; CHALLENGE = 324567

RESP: servername, H(ID=3, sharedsecret, 324567)

ACK

Usage of a shared

Secret… good idea,

Easy to manage!

Good idea??

17

Giuseppe Bianchi

CHAP and mutual authentication /2CHAP and mutual authentication /2
Reflection attackReflection attack

ID=2; CHALLENGE = 135623

RESP: client, H(ID=2, sharedsecret, 135623)

ACK

ID=2; CHALLENGE = 135623

RESP: servername, H(ID=2, sharedsecret, 135623)

ACK

VERY risky!!.
Attacker:

�replays server challenge

�accept computed resp

�uses resp to authenticate!!

Without any info on

real client !!

Giuseppe Bianchi

Mutual authentication with Mutual authentication with
ChallengeChallenge--ResponseResponse

(just some hints… no full analysis)(just some hints… no full analysis)

18

Giuseppe Bianchi

Basic ideaBasic idea

Boss, C1

Flavia, C2, H(secret, C1)

Boss, H(secret, C2)

C1!=C2

C2!=C1

Flavia shows knowledge

of secret over C1
Boss shows knowledge

of secret over C2

Giuseppe Bianchi

Reflection!Reflection!

�Does not work

Boss, C1

Flavia, C2, H(secret, C1)

Boss, H(secret, C2)

C1!=C2

Boss, C2

Flavia, C3, H(secret, C2)

C2!=C1

19

Giuseppe Bianchi

What if reflection is prevented by What if reflection is prevented by
protocol status?protocol status?

�Attacker may use “other” party!

Boss, C1

Flavia, C2, H(secret, C1)

Boss, H(secret, C2)

Flavia, C2

Boss, C3, H(secret, C2)

Giuseppe Bianchi

Let’s try to fix thisLet’s try to fix this

Boss, C1

Flavia, C2, H(secret, C1, C2)

Boss, C3, H(secret, C2, C3)

Chaining challenges! Add dependency

between challenges in same handshake

20

Giuseppe Bianchi

Does not workDoes not work

Boss, C1

Flavia, C2, H(secret, C1, C2)

Boss, C3, H(secret, C2, C3)

Boss, C2

Flavia, C3, H(secret, C2, C3)

Too many nonces!!

Giuseppe Bianchi

Minimize noncesMinimize nonces

Boss, C1

Flavia, C2, H(secret, C1, C2)

Boss, H(secret, C2, C1)

Same challenges, but different values (order!)

No reflection possible anymore

21

Giuseppe Bianchi

ChallengeChallenge--Response Response
in GSM authenticationin GSM authentication

Giuseppe Bianchi

GSM essential componentsGSM essential components

� MS: Mobile System
� HLR: Home Location Register
� VLR: Visiting Location Register
� AuC: Authentication Center
� BTS: Base Transceiver Station

� BSC: Base Station Controller
� SIM: Subscriber Identity Module
� MSC: Mobile Switching Center
� EIR: Equipment Identity Register

BTS

BTS

BSC

U
u

MS

Radio Access

Network

Home

Central Office

Visited

Central Office

MSC/VLR

Signaling

Data path

EIR

SS7

Network

PSTN

Network

HLR/AuC

22

Giuseppe Bianchi

Authentication: whenAuthentication: when
MS VLR HLR AUCBSS/MSC

Loc. Upd. Request
IMSI, LAI

Update Loc. Area
IMSI, LAI

Auth. Param. Req.
IMSI

Auth. Info. Req.
IMSI

Auth. Info
(Auth. Parameters)

Auth. Info
(Auth. Parameters)

authentication

Activate
ciphering

Update Location
IMSI, MSRN

Insert Subscrib. Data
IMSI, additional data

Insert Subscrib. Data
ACK

Locat. Upd. Accept
IMSI

Start Ciphering
Kc

Locat. Upd. Accept

Forward new TMSI
TMSI

TMSI Realloc Cmd

Locat. Upd. Accept

TMSI Realloc ACK
TMSI ACK

Giuseppe Bianchi

AuthenticationAuthentication
(managed by VLR)(managed by VLR)

Authentication Request

Challenge: 128 bit RAND

A3

RANDKi

SRES
Authentication Response

Signed RESult: 32 bit SRES
Equal?

SRES

VLRMS

HLR /
AUC

IMSI, RAND

SRES, Kc

A8

RANDKi

Kc

23

Giuseppe Bianchi

Triplets (Authentication Vector)Triplets (Authentication Vector)

VLR
HLR /
AUC

IMSI

<RAND, SRES, Kc> x N

Home operator
Visited operator

� Idea: once in a VLR area, autentication will
need to be performed MANY times

� Hence deliver N triplets, to be used for N
distinct authentications

� IMPORTANT: VLR does NOT need to know
authentication algo used (A3, A8)
� Triplet contains computed result by AuC

� A3, A8 run inside the SIM (given by operator)

Giuseppe Bianchi

Authentication: detailsAuthentication: details

A38 = A3 and A8 at same time

RAND
128 bit challenge

Ki
128 bit secret

SRES
32 bit

Kc
64 bits (well, 54 + ten 0s)

Deliberately weak?

�Challenge response with:
�Challenge � RAND

�Secret � Ki

�Hash � A3 algorithm

24

Giuseppe Bianchi

On the A3/A8 algorithmsOn the A3/A8 algorithms
�Security by obscurity

�A3 algorithm CAN BE operator-specific!

�But most vendors originally used algo today called COMP128

�Non disclosed but…
�Reverse engineered? Leaked out?

�COMP128 broken in 1998
�http://www.isaac.cs.berkeley.edu/isaac/gsm-faq.html

�Chosen challenge attack [1998, Briceno, Goldberg, Wagner]
�Ki disclosed through about 150.000 queries with suitably

selected challenges � approx 8h in 1998
�Having Ki means cloning the card!

�Better attack [2002, Rao, Rohatgi, Scherzer, Tinguely]
�Less than 1 minute!

�Lesson learned:
�Security by obscurity does NOT work!! Leave hash design to

crypto experts

Giuseppe Bianchi

Over the air attachOver the air attach

�No mutual authentication!

�Rogue BTS may easily perform
the attach

�run it for sufficient time

25

Giuseppe Bianchi

UMTS authentication: AKAUMTS authentication: AKA
Authentication and Key AgreementAuthentication and Key Agreement

(Simplified for our purposes)(Simplified for our purposes)

Giuseppe Bianchi

Major differences with GSMMajor differences with GSM

�Mutual authentication!

�Optimized…

�Guaranteed freshness for auth parameters

�More comprehensive security

�More keys and several extra details

�(we will not focus on this)

�Algorithms FIRST scrutinized by
research community, THEN selected

�The opposite of security by obscurity ☺

26

Giuseppe Bianchi

Authentication VectorAuthentication Vector

VLRMS
HLR /
AUC

IMSI

N x Auth Vector

Authentication Vector:

- XRES (expected result) as GSM SRES

- RAND as GSM RAND

- AUTN (Netw. Auth. token) - - -

- CK (cipher key) as GSM Kc

- IK (integrity key) - - -

RAND, AUTN

RES
RES

=
XRES?

Auth
Network!

Giuseppe Bianchi

MS authenticationMS authentication

�Usual challenge response, but
different (public) algorithm

f2

RANDK

RES
32-128 bit

f3

RANDK

CK
Cipher key

128 bit

f4

RANDK

IK
Integrity Key

128 bit

27

Giuseppe Bianchi

Network AuthenticationNetwork Authentication

�MS should send a nonce…

�1 extra message

�Bright idea: use Sequence number as
“implicit” nonce!

�Issue: MS and AuC must be (approx) synchronized

�And robust procedures for resync must be specified

HLR /
AUC

MS

SQN-MS

SQN-HE

VLR

SQN

Giuseppe Bianchi

SEQ as nonce: ideaSEQ as nonce: idea

Current SQN-MS

stored

SQN (included in AUTN)

Check

SQN = SQN-MS+1

(or in appropriate

Tolerance range to

come with lost msg)

Use SQN as

“implicit” challenge!!

Once auth OK, update local SQN

28

Giuseppe Bianchi

Network authentication:Network authentication:
AUTN formatAUTN format

SQN

Sequence number

AMF

Auth & key mgmt field

MAC-A

Message Auth code

48 bit 16 bit: carries info on

which algo or key to

use if choice abailable

(signalling info)

64 bit: allows MS to

verify authenticity of

Network!

f1

RANDK

MAC-A
64 bit

AMFSQN

MS: has all info needed to check

that MAC-A transmitted by network

is the same of MAC-A locally computed!

SQN guarantees defense against replay

Giuseppe Bianchi

Minor detail: protecting SQN!Minor detail: protecting SQN!

�A privacy problem:

�By looking at SQN (stepwise increasing), eavesdropper may
discriminate and track user!

�Solution: mask SQN with Anonymity Key

SQN xor AK

Sequence number

AMF

Auth & key mgmt field

MAC-A

Message Auth code

f5

RANDK

AK
Anonymity Key

48 bit

