Writing Your Own
Wireshark Packet
Dissectors (ADVANCED)

March 31, 2008

Guy Harris

SHARKFEST '08
Foothill College
March 31 - April 2, 2008

Advanced dissector writing

Techniqgues needed for protocols that are “complicated’:
* Fragment reassembly

e Decryption and decompression

e Conversations and per-packet data
 Request/response matching

e Cleaning up allocated data

e Expert info

e Taps

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

“Simple” protocols

Many protocols are “simple”

e One PDU per bearer protocol PDU

* No encryption, compression, etc.

e Each PDU can be interpreted independently

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

“Complicated” protocols

But not all protocols are simple

* Fragmentation and reassembly

 PDU body encoding

e PDUs that require context from previous PDUs
* etc.

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

“Data sources”

Not all data in a dissected PDU comes directly from
current lower-level PDU

e Can come from other lower-level PDUs (reassembly)
e Can come from decompressed/decrypted/etc. data

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

“Data sources” (cont’d)

Solution: named data sources
e Name, used as tab name in hex dump pane
e “Real data” tvbuff, containing data

* Created with tvb new real data

e Data source created with add new data source

* Added to list of data sources for packet

* add new data source(pinfo, tvbuff, name)

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Dissector initialization routines

Dissector might need to do initialization/cleanup work
when capture is opened

e |nitialize internal data structures
e Free data left over from previous capture

* register init routine() registers callback -
callback has no arguments and no return value

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Fragmentation and reassembly

Some higher-layer PDUs are built from multiple lower-
layer PDUs

 |P fragmentation, IEEE 802.11 fragmentation, etc.
 Need to reassemble
e Lower-layer PDUs contain header plus payload

e Payloads of fragments are reassembled into higher-
layer PDU

 Header of fragment indicates where it appears in
higher-layer PDU

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Reassembly with ID and offset

Some protocols identify fragments with PDU ID and byte
offsets

e Examples: IPv4, IPV6
* |D identifies reassembled PDU (e.qg., IP ID)

e Byte offset is offset within reassembled PDU of first
byte of payload

e Last fragment is specially marked

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Process payload

fragment add check() does “heavy lifting” of
reassembly

e The first time this packet is seen:

e Just returns NULL if fragment cut short by snaplen

* Adds to reassembly based on pinfo->src, pinfo->dst,
id

* |f all fragments found, saves as finished reassembly and
returns fragment data * for finished reassembly

e Otherwise, returns NULL

e All times after that, looks for finished reassembly and
returns fragment data * for finished reassembly

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Process payload (cont’d)

fragment add check()uses two GHashTable
structures to keep track of fragments and
reassemblies

nitialize in dissector initialization routine

nitialize first with fragment table init()

nitialize second with reassembled table init()

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Dissect reassembled payload

process reassembled data() does the "heavy
lifting” to process a possibly reassembled PDU

* Checks whether reassembly done (head != NULL)

e |If so, checks whether there’s more than one fragment
e If more than one fragment:

* Creates new tvbuff for reassembled data
* Adds a data source for it, with specified name
* Adds items with information about fragments to protocol tree

e If only one fragment, creates subset tvbuff for payload
e If reassembly not done, returns NULL
' (R

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Dissect reassembled payload (cont’d)

process reassembled data() needs ett and
hf variables for subtrees and items it adds

e fragment items structure specifies the variables
e Contains pointers to the variables

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Reassembly with sequence # and
offset

Some protocols identify fragments with PDU ID and
sequence number

e Examples: TDS, TIPC
e |ID identifies reassembled PDU
e Sequence number is ordinal number of fragment

* 0-based or 1-based
e | ast fragment specially marked

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Process payload

Similar to fragment byte offsets

e fragment add seq check()

e Takes sequence # rather than byte offset as argument
e Sequence # is 0-based

e For protocols with 1-based sequence #'s, subtract 1

= A fm—
CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Dissect reassembled payload

Same as for fragment byte offsets

* process reassembled data() hides the
differences

V i —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Decryption/decompression

Some protocols encrypt or compress data in the PDU
 Must decrypt or decompress before processing

e Cannot decrypt/decompress in place

 Must generate new data array and tvbuff for data array
 Make a data source from tvbuff

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Decrypt/decompress into new buffer

Allocate a buffer and decrypt/decompress into it:

guint8 *buff;
tvbuff t *new tvb;
int actual size, captured size;

actual size = amount of decrypted/decompressed data;

captured_size = amount of that data we can generate from captured data;
buff = g malloc(captured size);
decrypt/decompress into buff;

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Set up new tvbuff for buffer

Allocate a new tvbuff for the buffer:

new tvb = tvb new real data(buff, captured size, actual size);

Arrange that the buffer be freed when the tvbuff is freed:

tvb_set free cb(new_tvb, g free);

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Set up new data source

Arrange that the new tvbuff be cleaned up when the
original tvbuff is cleaned up:

tvb set child real data tvbuff(tvb, new tvb);

Add the new tvbuff as a data source, so it shows up as a
tab in the hex dump pane.

add new data source(pinfo, new tvb, name);

Do dissection with the new tvbuff

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Conversations

Mechanism for keeping track of “flows” (connections,
etc.)

e |dentified by endpoint addresses and port numbers
* Addresses are address structures

* Address type and value as bytes
e Ports are numbers

e Conversation has “port type” identifying type of port
e TCP, UDP, SCTP, IPX (socket), etc.

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Conversation state

Information about flow attached to conversation
e Can set dissector for conversation

* Protocol like SDP can indicate “Set up TCP session with this
protocol”

e Setting dissector means future packets will be dissected
properly
e Can attach data to a conversation

e Contains state information needed to dissect packets in
conversation

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Creating conversations

Use the function conversation new()
e Caller must check for existing conversation first
* Arguments:

* Frame number of first frame
 Endpoint addresses
e Port type and endpoint ports
e Options
* Returns conversation t * handle

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Finding conversations

Use the function £ind conversation()
e Arguments:

* Frame number of first frame
 Endpoint addresses
e Port type and endpoint ports
e Options
* Returns conversation t * handle

CACE

TECHNOLOGIES

WIRESHARK

UNIVERSITY

Wildcards

conversation new () options allow “wildcarding” of
addresses and ports

e Can create conversation with one “wildcard” address
and/or port

* For UDP traffic where reply can come from address or port
different from request destination

e For “future” conversation where both endpoints are not
known yet

e Can specify NO ADDR2 and/or NO PORT2

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Wildcard matching

find conversation() options control “wildcarding”
of address and port

 Either fully specified or wildcard conversations can
match

e Match with fewest wildcards wins
e Can specify NO_ADDR B and/or NO PORT B
e Wildcard address or port can match either endpoint

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Completing wildcard conversations

Matching can cause wildcards to be filled in

e Filling in is used for “future” connection-oriented
conversations

e Protocol such as SDP can indicate “Set up TCP
session with this protocol”

* Perhaps only one endpoint is known
* Receiver of SDP message will connect to that endpoint
e Full endpoint from which it connects is unknown

e Once connection is made, wildcarded endpoint is filled
In by find conversation()

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Conversation dissector

Set with conversation set dissector ()

* Takes conversation t * and dissector handle as
arguments

e Works for TCP, UDP, Datagram Congestion Control
Protocol (DCCP), AppleTalk Transaction Protocol

e Takes precedence over heuristics and port matches

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Conversation data

Each protocol can attach data to a conversation
e Data is opaque - not interpreted by conversation code
e Allocating and freeing is the dissector’s responsibility

e Check whether data already exists, then add data if it
does not exist

e Data can be changed as you dissect packets in the
conversation

e Data should be changed only on first pass through packets -
pinfo->fd->flags.visited false

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Adding conversation data

Use the function conversation add proto data()
e Arguments:

* conversation t * handle
* Protocol number for protocol
* void * pointing to data

* No return value

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Finding conversation data

Use the function conversation get proto data()
e Arguments:

* conversation t * handle

* Protocol number for protocol

* Returns void * pointing to data, or NULL if no data for
protocol

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Per-packet data

Data needed in order to dissect a particular packet
correctly

e Might come from previous packets

e Might come from per-conversation data updated by
previous packets

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Adding per-packet data

Use the function p add proto data()
e Arguments:

* frame data * handle
* Protocol number for protocol
* void * pointing to data
* No return value
e Check whether already present before adding

e Data should be added only on first pass through packets

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Finding per-packet data

Use the function p get proto data()
e Arguments:

* frame data * handle
* Protocol number for protocol

* Returns void * pointing to data, or NULL if no data for
protocol

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Request/response matching

Many protocols are request-response protocols

e Decoding response might require info from request

e User might want response to show frame # of request
e User might want time between request and response

/(xxxxxxxxxxxxx .com

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Request/response matching table

If multiple requests in flight, protocol probably has
request ID field

* Use GHashTable or se tree with request ID as key

* One table per conversation, not one global table!
e Store relevant information as value

* |[nformation needed to dissect response (e.g., request type)
* Time stamp of request
* Frame #s of request and response (0 means unknown)

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Freeing allocated data

Data allocated privately by dissectors eventually needs
to be freed

* If se allocators used, freeing happens automatically

e Otherwise, need to free data in your initialization
routine

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Expert analysis

Log of “possibly interesting” behavior in a capture

e Allows users to get a summary of what they might want
to look at

* Four severity levels:

e Chat - interesting events in normal traffic flow, such as TCP
SYN

e Note - notable but not unusual events, such as HTTP 404
e \Warn - unusual events, such as a connection failure
e Error - serious problem, such as a malformed packet

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Expert information groups

The general type of condition an item describes
* Bad checksum

* Protocol sequence problem (discontinuous sequence
numbers, retransmissions, etc.)

e Error response (gives error code)
 Request code (typically at Chat level)
* Undecoded

 Reassembly problem

e Malformed packet

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Setting expert info

“Expert info” is a property of a protocol tree item
e Must have an item to which expert info is attached

* Added with expert add info format():
* packet info * (pinfo) pointer
proto item * pointer to item
group
severity
printf-style format string and arguments

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Taps and tap listeners

Mechanism for producing statistics, etc., from packets
e Dissectors provide taps

e Statistics routines provide tap listeners

e Tap listeners attach to taps

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Taps can supply pre-digested data to listeners
* Register tap by name in proto register routine
e Queue packet for tap in dissection routine

* Pass (non-auto!) data structure with pre-digested data, if
tap supplies any

Y ol —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Tap listeners

Tap listeners process data supplied by taps
e Per-packet “packet” callback arguments are:

* pinfo
e Dissection information (including protocol tree)
* Pre-digested information from dissector, if any

e “Display” callback called when accumulated
information should be displayed or updated

e Tap listeners with Ul cannot be shared between
Wireshark and TShark - with an exception...

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

stats tree taps

stats tree tap does the Ul work for you
* Displays a tree view

* Alist view is just a tree view with one level
* All you do is add nodes and update nodes

e \Works with both Wireshark and TShark

* stats tree tap can be a plugin (see stats tree
plugin)

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Further information

e Everything Gerald mentioned in “Further information” in
the previous session

* (Except for “Next session”; no infinite looping here :-))
e doc/README.request_response tracking
e doc/README.tapping

e doc/README.stats tree

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

V i —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Bonus material

Sample code

V i —

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Process payload Iin reassembly

if (doing defragmentation && this is part of fragmented PDU) {
head = fragment add check(tvb, payload offset, pinfo, ID,
fragment table, reassembled table, byte offset,
fragment data len, true for last fragment);
next tvb = process reassembled data(tvb, offset, pinfo,
“name”, head, &frag items, &update col info, tree);
} else {
if (this is not part of fragmented PDU | | this is the first fragment) {
next tvb = tvb new subset(tvb, payload offset, -1, -1);
if (part of fragmented PDU)
pinfo->fragmented = TRUE:
else
pinfo->fragmented = FALSE;
} else
next tvb = NULL;

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

Do dissection after reassembly

1f (next tvb == NULL) {
/* Just show this as a fragment. */
1f (check col(pinfo->cinfo, COL INFO)) {
col add fstr(pinfo->cinfo, COL INFO, something to
show this as a fragment) ;
}
1f (head && head->reassembled in != pinfo->fd->num) {
if (check col(pinfo->cinfo, COL INFO)) {
col append fstr(pinfo->cinfo, COL INFO,
" [Reassembled in #%u]", head->reassembled in);
}
}

call dissector(data handle, tvb new subset(tvb,
payload offset, -1, -1), pinfo, parent tree);
pinfo->fragmented = save fragmented;
} else {
hand next tvb to the next dissector;

}

CACE WIRESHARK

TECHNOLOGIES UNIVERSITY

