
Writing Your Own
Wireshark Packet
Dissectors (ADVANCED)
March 31, 2008

Guy Harris

SHARKFEST '08
Foothill College
March 31 - April 2, 2008

Advanced dissector writing

Techniques needed for protocols that are “complicated”:

• Fragment reassembly

• Decryption and decompression

• Conversations and per-packet data

• Request/response matching

• Cleaning up allocated data

• Expert info

• Taps

“Simple” protocols

Many protocols are “simple”

• One PDU per bearer protocol PDU

• No encryption, compression, etc.

• Each PDU can be interpreted independently

“Complicated” protocols

But not all protocols are simple

• Fragmentation and reassembly

• PDU body encoding

• PDUs that require context from previous PDUs

• etc.

“Data sources”

Not all data in a dissected PDU comes directly from
current lower-level PDU

• Can come from other lower-level PDUs (reassembly)

• Can come from decompressed/decrypted/etc. data

“Data sources” (cont’d)

Solution: named data sources

• Name, used as tab name in hex dump pane

• “Real data” tvbuff, containing data

• Created with tvb_new_real_data

• Data source created with add_new_data_source

• Added to list of data sources for packet

• add_new_data_source(pinfo, tvbuff, name)

Dissector initialization routines

Dissector might need to do initialization/cleanup work
when capture is opened

• Initialize internal data structures

• Free data left over from previous capture

• register_init_routine() registers callback -
callback has no arguments and no return value

Fragmentation and reassembly

Some higher-layer PDUs are built from multiple lower-
layer PDUs

• IP fragmentation, IEEE 802.11 fragmentation, etc.

• Need to reassemble

• Lower-layer PDUs contain header plus payload

• Payloads of fragments are reassembled into higher-
layer PDU

• Header of fragment indicates where it appears in
higher-layer PDU

Reassembly with ID and offset

Some protocols identify fragments with PDU ID and byte
offsets

• Examples: IPv4, IPv6

• ID identifies reassembled PDU (e.g., IP ID)

• Byte offset is offset within reassembled PDU of first
byte of payload

• Last fragment is specially marked

Process payload

fragment_add_check() does “heavy lifting” of
reassembly

• The first time this packet is seen:

• Just returns NULL if fragment cut short by snaplen

• Adds to reassembly based on pinfo->src, pinfo->dst,
id

• If all fragments found, saves as finished reassembly and
returns fragment_data * for finished reassembly

• Otherwise, returns NULL

• All times after that, looks for finished reassembly and
returns fragment_data * for finished reassembly

Process payload (cont’d)

fragment_add_check()uses two GHashTable
structures to keep track of fragments and
reassemblies

• Initialize in dissector initialization routine

• Initialize first with fragment_table_init()

• Initialize second with reassembled_table_init()

Dissect reassembled payload

process_reassembled_data() does the “heavy
lifting” to process a possibly reassembled PDU

• Checks whether reassembly done (head != NULL)

• If so, checks whether there’s more than one fragment

• If more than one fragment:

• Creates new tvbuff for reassembled data

• Adds a data source for it, with specified name

• Adds items with information about fragments to protocol tree

• If only one fragment, creates subset tvbuff for payload

• If reassembly not done, returns NULL

Dissect reassembled payload (cont’d)

process_reassembled_data() needs ett_ and
hf_ variables for subtrees and items it adds

• fragment_items structure specifies the variables

• Contains pointers to the variables

Reassembly with sequence # and
offset

Some protocols identify fragments with PDU ID and
sequence number

• Examples: TDS, TIPC

• ID identifies reassembled PDU

• Sequence number is ordinal number of fragment

• 0-based or 1-based

• Last fragment specially marked

Process payload

Similar to fragment byte offsets

• fragment_add_seq_check()
• Takes sequence # rather than byte offset as argument

• Sequence # is 0-based

• For protocols with 1-based sequence #’s, subtract 1

Dissect reassembled payload

Same as for fragment byte offsets

• process_reassembled_data() hides the
differences

Decryption/decompression

Some protocols encrypt or compress data in the PDU

• Must decrypt or decompress before processing

• Cannot decrypt/decompress in place

• Must generate new data array and tvbuff for data array

• Make a data source from tvbuff

Decrypt/decompress into new buffer

Allocate a buffer and decrypt/decompress into it:
guint8 *buff;
tvbuff_t *new_tvb;
int actual_size, captured_size;

actual_size = amount of decrypted/decompressed data;
captured_size = amount of that data we can generate from captured data;
buff = g_malloc(captured_size);
decrypt/decompress into buff;

Set up new tvbuff for buffer

Allocate a new tvbuff for the buffer:
new_tvb = tvb_new_real_data(buff, captured_size, actual_size);

Arrange that the buffer be freed when the tvbuff is freed:
tvb_set_free_cb(new_tvb, g_free);

Set up new data source

Arrange that the new tvbuff be cleaned up when the
original tvbuff is cleaned up:

tvb_set_child_real_data_tvbuff(tvb, new_tvb);

Add the new tvbuff as a data source, so it shows up as a
tab in the hex dump pane:

add_new_data_source(pinfo, new_tvb, name);

Do dissection with the new tvbuff

Conversations

Mechanism for keeping track of “flows” (connections,
etc.)

• Identified by endpoint addresses and port numbers

• Addresses are address structures

• Address type and value as bytes

• Ports are numbers

• Conversation has “port type” identifying type of port

• TCP, UDP, SCTP, IPX (socket), etc.

Conversation state

Information about flow attached to conversation

• Can set dissector for conversation

• Protocol like SDP can indicate “Set up TCP session with this
protocol”

• Setting dissector means future packets will be dissected
properly

• Can attach data to a conversation

• Contains state information needed to dissect packets in
conversation

Creating conversations

Use the function conversation_new()

• Caller must check for existing conversation first

• Arguments:

• Frame number of first frame

• Endpoint addresses

• Port type and endpoint ports

• Options

• Returns conversation_t * handle

Finding conversations

Use the function find_conversation()

• Arguments:

• Frame number of first frame

• Endpoint addresses

• Port type and endpoint ports

• Options

• Returns conversation_t * handle

Wildcards

conversation_new() options allow “wildcarding” of
addresses and ports

• Can create conversation with one “wildcard” address
and/or port

• For UDP traffic where reply can come from address or port
different from request destination

• For “future” conversation where both endpoints are not
known yet

• Can specify NO_ADDR2 and/or NO_PORT2

Wildcard matching

find_conversation() options control “wildcarding”
of address and port

• Either fully specified or wildcard conversations can
match

• Match with fewest wildcards wins

• Can specify NO_ADDR_B and/or NO_PORT_B

• Wildcard address or port can match either endpoint

Completing wildcard conversations

Matching can cause wildcards to be filled in

• Filling in is used for “future” connection-oriented
conversations

• Protocol such as SDP can indicate “Set up TCP
session with this protocol”

• Perhaps only one endpoint is known

• Receiver of SDP message will connect to that endpoint

• Full endpoint from which it connects is unknown

• Once connection is made, wildcarded endpoint is filled
in by find_conversation()

Conversation dissector

Set with conversation_set_dissector()

• Takes conversation_t * and dissector handle as
arguments

• Works for TCP, UDP, Datagram Congestion Control
Protocol (DCCP), AppleTalk Transaction Protocol

• Takes precedence over heuristics and port matches

Conversation data

Each protocol can attach data to a conversation

• Data is opaque - not interpreted by conversation code

• Allocating and freeing is the dissector’s responsibility

• Check whether data already exists, then add data if it
does not exist

• Data can be changed as you dissect packets in the
conversation

• Data should be changed only on first pass through packets -
pinfo->fd->flags.visited false

Adding conversation data

Use the function conversation_add_proto_data()

• Arguments:

• conversation_t * handle

• Protocol number for protocol

• void * pointing to data

• No return value

Finding conversation data

Use the function conversation_get_proto_data()

• Arguments:

• conversation_t * handle

• Protocol number for protocol

• Returns void * pointing to data, or NULL if no data for
protocol

Per-packet data

Data needed in order to dissect a particular packet
correctly

• Might come from previous packets

• Might come from per-conversation data updated by
previous packets

Adding per-packet data

Use the function p_add_proto_data()

• Arguments:

• frame_data * handle

• Protocol number for protocol

• void * pointing to data

• No return value

• Check whether already present before adding

• Data should be added only on first pass through packets

Finding per-packet data

Use the function p_get_proto_data()

• Arguments:

• frame_data * handle

• Protocol number for protocol

• Returns void * pointing to data, or NULL if no data for
protocol

Request/response matching

Many protocols are request-response protocols

• Decoding response might require info from request

• User might want response to show frame # of request

• User might want time between request and response

Request/response matching table

If multiple requests in flight, protocol probably has
request ID field

• Use GHashTable or se_tree with request ID as key

• One table per conversation, not one global table!

• Store relevant information as value

• Information needed to dissect response (e.g., request type)

• Time stamp of request

• Frame #s of request and response (0 means unknown)

Freeing allocated data

Data allocated privately by dissectors eventually needs
to be freed

• If se_ allocators used, freeing happens automatically

• Otherwise, need to free data in your initialization
routine

Expert analysis

Log of “possibly interesting” behavior in a capture

• Allows users to get a summary of what they might want
to look at

• Four severity levels:

• Chat - interesting events in normal traffic flow, such as TCP
SYN

• Note - notable but not unusual events, such as HTTP 404

• Warn - unusual events, such as a connection failure

• Error - serious problem, such as a malformed packet

Expert information groups

The general type of condition an item describes

• Bad checksum

• Protocol sequence problem (discontinuous sequence
numbers, retransmissions, etc.)

• Error response (gives error code)

• Request code (typically at Chat level)

• Undecoded

• Reassembly problem

• Malformed packet

Setting expert info

“Expert info” is a property of a protocol tree item

• Must have an item to which expert info is attached

• Added with expert_add_info_format():

• packet_info * (pinfo) pointer

• proto_item * pointer to item

• group

• severity

• printf-style format string and arguments

Taps and tap listeners

Mechanism for producing statistics, etc., from packets

• Dissectors provide taps

• Statistics routines provide tap listeners

• Tap listeners attach to taps

Taps

Taps can supply pre-digested data to listeners

• Register tap by name in proto_register_ routine

• Queue packet for tap in dissection routine

• Pass (non-auto!) data structure with pre-digested data, if
tap supplies any

Tap listeners

Tap listeners process data supplied by taps

• Per-packet “packet” callback arguments are:

• pinfo

• Dissection information (including protocol tree)

• Pre-digested information from dissector, if any

• “Display” callback called when accumulated
information should be displayed or updated

• Tap listeners with UI cannot be shared between
Wireshark and TShark - with an exception...

stats_tree taps

stats_tree tap does the UI work for you

• Displays a tree view

• A list view is just a tree view with one level

• All you do is add nodes and update nodes

• Works with both Wireshark and TShark

• stats_tree tap can be a plugin (see stats_tree
plugin)

Further information

• Everything Gerald mentioned in “Further information” in
the previous session

• (Except for “Next session”; no infinite looping here :-))

• doc/README.request_response_tracking

• doc/README.tapping

• doc/README.stats_tree

Q&A

Bonus material

Sample code

Process payload in reassembly

if (doing defragmentation && this is part of fragmented PDU) {
	

 head = fragment_add_check(tvb, payload_offset, pinfo, ID,
	

 fragment_table, reassembled_table, byte_offset,
	

 fragment_data_len, true_for_last_fragment);
	

 next_tvb = process_reassembled_data(tvb, offset, pinfo,
	

 “name”, head, &frag_items, &update_col_info, tree);
} else {
	

 if (this is not part of fragmented PDU || this is the first fragment) {
	

 	

 next_tvb = tvb_new_subset(tvb, payload_offset, -1, -1);
	

 	

 if (part of fragmented PDU)
	

 	

 	

 pinfo->fragmented = TRUE:
	

 	

 else
	

 	

 	

 pinfo->fragmented = FALSE;
	

 } else
	

 	

 next_tvb = NULL;
}

Do dissection after reassembly

if (next_tvb == NULL) {
	

 /* Just show this as a fragment. */
	

 if (check_col(pinfo->cinfo, COL_INFO)) {
 col_add_fstr(pinfo->cinfo, COL_INFO, something to
 show this as a fragment);
	

 }
	

 if (head && head->reassembled_in != pinfo->fd->num) {
	

 	

 if (check_col(pinfo->cinfo, COL_INFO)) {
	

 	

 	

 col_append_fstr(pinfo->cinfo, COL_INFO,
	

 	

 	

 " [Reassembled in #%u]", head->reassembled_in);
	

 	

 }
	

 }
	

 call_dissector(data_handle, tvb_new_subset(tvb,
	

 payload_offset, -1, -1), pinfo, parent_tree);
	

 pinfo->fragmented = save_fragmented;
} else {
	

 hand next_tvb to the next dissector;
}

