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ABSTRACT
Address Space Layout Randomization (ASLR) is a defen-
sive technique supported by many desktop and server oper-
ating systems. While smartphone vendors wish to make it
available on their platforms, there are technical challenges
in implementing ASLR on these devices. Pre-linking, lim-
ited processing power and restrictive update processes make
it difficult to use existing ASLR implementation strategies
even on the latest generation of smartphones. In this paper
we introduce retouching, a mechanism for executable ASLR
that requires no kernel modifications and is suitable for mo-
bile devices. We have implemented ASLR for the Android
operating system and evaluated its effectiveness and per-
formance. In addition, we introduce crash stack analysis,
a technique that uses crash reports locally on the device,
or in aggregate in the cloud to reliably detect attempts to
brute-force ASLR protection. We expect that retouching
and crash stack analysis will become standard techniques in
mobile ASLR implementations.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Experimentation, Performance

Keywords
ASLR, control flow hijacking, return-to-libc, mobile devices,
smartphones, Android

1. INTRODUCTION
Over the last few years Address-Space Layout Random-

ization (ASLR) has become mainstream, with various lev-
els of support in Linux [25], Windows [20], and Mac OS X
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[19]. ASLR randomizes the base points of the stack, heap,
shared libraries, and base executables. The goal of ASLR
is to make certain classes of control-hijacking attacks more
difficult: with executable code residing at unknown loca-
tions, garden variety buffer or stack overflow attacks are
made significantly harder to develop and execute [14]. In
conjunction with OS mechanisms that only allow writing
to non-executable memory (e.g. DEP in Windows), ASLR
prevents many network-based native code control hijacking
attacks from completing [24].

Implementation challenges.
Although there has been much work on implementing and

evaluating ASLR for general-purpose PCs, none of the ma-
jor smartphones currently use it. In principle, the same
ASLR techniques should carry over to mobile devices, how-
ever there are several practical obstacles that make this dif-
ficult. Smartphone operating systems spend considerable
effort to minimize boot and application launch time, power
consumption, and memory footprint. These optimizations
make existing ASLR implementation strategies insufficient.
We give two examples for challenges in implementing ASLR
in Android:

• The Android OS prelinks shared libraries to speed up
the boot process. Prelinking takes place during the
build process and results in hard-coded memory ad-
dresses written in the library code. This prevents relo-
cating these libraries in process memory. Android also
uses a custom dynamic linker that cannot self-relocate
at run-time (unlike ld.so). Recent attack techniques
against ASLR clearly demonstrate the need to ran-
domize the whole process address space, including base
executables and shared libraries [18].

• During normal operation the filesystem on the device is
mounted read-only for security reasons. This prevents
binary editing tools [12] from modifying images on the
device or in file-backed memory.

Our contributions.
We propose retouching, a novel mechanism for randomiz-

ing prelinked code for deployment on mobile devices. Re-
touching can randomize all executable code including li-
braries (and prelinked libraries), base executables, and the
linker. Unlike traditional ASLR implementations, retouch-
ing requires no kernel modifications. We implement the



mechanism for Android, evaluate its effectiveness, and mea-
sure its impact on performance at build and runtime and on
memory footprint. Our conclusion is that retouching is an
effective approach to ASLR and is particularly well-suited
in situations where performance is an issue, or when there
are incentives to avoid kernel changes.

Our second contribution is a cloud-based approach to de-
tecting and preventing ASLR brute-forcing [23]. We intro-
duce crash stack analysis, a technique that analyzes crash
reports from mobile devices and reliably detects attempts
to bypass ASLR by guessing the random offset used on each
device. We evaluate crash stack analysis using real crash
data as well as simulated attacks, and conclude that the ap-
proach can effectively detect attacks and, in addition, can
help pinpoint the OS code being targeted.

Brute forcing mobile ASLR can be very effective and dif-
ficult to detect locally. By making a single attempt on every
mobile user the attacker can compromise 1/256 of mobile
devices (assuming 8 bits for ASLR randomness as in Win-
dows). Given the billions of phones in use, this fraction gives
the attacker control of a large number of devices.

In the rest of the paper, Sections 2 and 3 give some back-
ground information on ASLR and the Android OS, Section
4 presents the threat model that we address with our de-
sign and implementation in Section 5. Section 6 evaluates
the implementation and discusses it in the context of other
related and future work. Section 7 introduces crash stack
analysis and evaluates its effectiveness. Sections 8 and 9
discuss future and related work, and Section 10 concludes.

2. OVERVIEW OF ADDRESS-SPACE RAN-
DOMIZATION

Before discussing our system we first survey traditional
strategies for implementing ASLR and their limitations on
Android. The first ASLR implementation, PaX [25], was
designed for Linux. Subsequently, ASLR was implemented
in Windows Vista and Mac OS X. We briefly describe these
implementations focusing primarily on user-space random-
ization (as opposed to kernel randomization, which is a sep-
arate topic).

2.1 PaX
PaX implements ASLR by generating three different ran-

dom offsets (delta values) that apply to different areas of the
address space:

• delta mmap controls the randomization of areas allo-
cated via mmap(), which includes shared libraries, as
well as the main executable when compiled and linked
as an ET DYN ELF file

• delta exec is the offset of the base executable, fol-
lowed by the heap, when the base executable is of type
ET EXEC (not position-independent)

• delta stack is the offset for the user-space stack

PaX ASLR is complemented by data and stack execution
prevention logic. While several elements of PaX are applica-
ble to Android, the technique for randomizing the location of
shared libraries and the dynamic linker is not: most shared
libraries are prelinked and mapped to specific locations when
built, and the dynamic linker is unable to self-relocate.

2.2 Windows
Following the implementation of DEP (Data Execution

Prevention: marking the stack and heap as non-execute) in
Windows XP SP2, Microsoft implemented ASLR in Win-
dows Vista. The two mechanisms work together to pre-
vent control-flow hijacking attacks (such as return-to-libc),
as well as injected code from being executed on the stack
or heap. In the Windows ASLR implementation, executable
code randomization happens on every reboot, when a global
image offset is selected randomly out of 256 possibilities.
Additionally, every process is launched with an individually
randomized stack, heap, and Process Environment Block
(PEB) [26]. The 8 bits of entropy used for selecting the off-
sets renders the Windows ASLR implementation vulnerable
to guessing attacks [23], but is still better than no random-
ization at all.

Adopting the Windows ASLR approach directly in An-
droid would increase boot time of the device substantially
by eliminating library prelinking.

2.3 Mac OS X
Apple introduced ASLR in the Leopard release of Mac OS

X. Currently, OS X only randomizes the offsets of shared
libraries. This randomization is performed at the time li-
braries are prelinked, effectively prelinking them at a dif-
ferent address on each system. In addition to ASLR, the
operating system protects stack and heap data from being
executed (heap protection is only available for 64-bit bina-
ries) [19, 15].

Retouching, the technique we have developed, is concep-
tually similar to randomization during prelinking. The addi-
tional benefits of retouching are in significantly reducing the
amount of work performed on the target device by perform-
ing the prelinking during the build process and retaining the
minimum information needed for randomization. Addition-
ally, no ELF manipulation code needs to be installed on the
target.

3. OVERVIEW OF ANDROID
Android [1] is an operating system for mobile devices de-

veloped by Google, Inc. While Android borrows much plat-
form code from other open-source operating systems, its se-
curity model was built from the start with the assumption
that the device will be running a variety of untrusted (or
partially trusted) applications. A manifestation of this ap-
proach is the execution of each installed application in a sep-
arate process running under a unique user identifier (UID):
any damage that the application can cause will be contained
within the resources that are dedicated to this UID—disjoint
from those of any other UID or application.

Android is built on top of the Linux kernel. The system
includes many device drivers and native system libraries, in-
cluding a customized implementation of libc. Applications
in Android are written in Java and execute in a virtual ma-
chine called Dalvik, in the form of Dalvik bytecode. After
boot, the system runs many services (such as the media ser-
vice, telephony service) each in its own process and having
a unique UID.

An important Android process, called zygote, is used to
speed-up application launch. The zygote is initialized at
boot time with commonly used shared libraries, application
frameworks, and the Dalvik virtual machine. When the user
launches an application the zygote forks and the requested



Relocation Type Count

local 139837
external 28480

Table 1: Local vs. external relocations in a typ-
ical release build of the platform (all prelinked li-
braries). Removing local relocations by pre-linking
saves space and reduces library load time.

Prelinking Trial 1 Trial 2 Trial 3

enabled 57.2s 57.6s 57.5s
disabled 60.7s 60.9s 60.3s

Table 2: The effect of prelinking on boot time of the
HTC Magic (about 3 seconds, or 5% on average).

application runs in the forked process. Since most resources
are already loaded in the zygote, the application can immedi-
ately begin executing. The zygote architecture implies that
with stack and heap randomization during process launch
all applications launched on the phone inherit the same ran-
domization parameters.

Prelinking using apriori.
One notable extension at the platform level is the prelink-

ing mechanism implemented by the apriori tool. In dynamic
linking, relocations are contents (addresses) in a binary ob-
ject file which need to be adjusted upon loading the binary
in memory. Apriori is a Google-built prelinker which re-
solves local relocations (relocations that refer to code in the
same object) in native shared libraries, and pins the libraries
to specific memory offsets. The prelinking happens after li-
brary objects are compiled and linked, but before they are
stripped of unnecessary sections. Apriori looks at the reloca-
tions listed for each prelinked library, and resolves those that
are local (i.e. not referencing other libraries)—removing
them from the relocation section of the library.

Table 1 shows that local relocations comprise the major-
ity of relocation entries in prelinked libraries, and Table 2
demonstrates the impact of prelinking on boot time of the
device—a 5% improvement (the Eclair branch of the code
base was used for this comparison). While removing reloca-
tions also contributes to a reduced filesystem image and re-
lieves demand for main memory, the main goal of prelinking
was to speed up the boot process. The impact of prelinking
on individual application launch is smaller, because much of
that cost is absorbed when the zygote is started.

Prelinking in Android offers clear benefits, but at the same
time it prevents standard implementations of ASLR which
rely exclusively on randomizing library locations at load
time. Prelinked libraries contain hard coded memory ad-
dresses and cannot be relocated. When the dynamic linker
loads a prelinked file, it uses a provided hard coded address
as the location of the library in memory instead of select-
ing an available address in the regular shared library load
area (Table 4). Android does not use the standard Linux
dynamic linker (ld.so), and instead has a simpler implemen-
tation that is mapped to a fixed location in memory.

Software updates.
The Android platform has a built-in mechanism for over-

the-air (OTA) software updates, comprising the following
components:

• Scripts for packaging over-the-air updates, invoked from
build/ tools/ releasetools/ ota from target files; the re-
sulting package includes a list of instructions in the
Edify language—these instructions are executed dur-
ing the update on the target device;

• The updater binary, which is statically linked, and ex-
ecuted on the handset while in recovery mode; the
source code is located under bootable/recovery/updater.

4. THREAT MODEL
The primary goal of ASLR is to make remote exploita-

tion difficult. ASLR is not designed to protect against a
malicious application already on the phone. To see why,
recall that shared libraries are loaded at the same memory
location for all processes in the system. Hence, a malicious
application can determine the memory location of libc, and
use that information to mount a return-to-libc attack on an-
other process. ASLR cannot prevent this. Consequently, in
evaluating the security of our proposal we only consider re-
mote attackers who do not already have a foothold on the
phone. More precisely, we use the following threat model.

In-scope threats.
Our goal is to prevent network attackers from exploiting

vulnerable network-facing services.

• Network attackers have the ability to send arbitrary
packets to any open port on the device, as well as
receive responses. A malicious website and a nearby
rogue access point are potential network attackers.

• Network-facing services can have exploitable vul-
nerabilities such as buffer and stack overruns. These
can result in either code injection or return-to-libc ex-
ploits, and ASLR aims to prevent the latter. Exam-
ples of such vulnerabilities would include a rogue SMS
packet [16] or a malicious video that targets a codec
flaw.

Out-of-scope threats.
In the context of Android we do not address the case

of malicious applications (executed by the Dalvik VM) at-
tempting to attack other processes on the system. The
UID-based compartmentalization mechanism in Android is
specifically intended to sandbox applications and limit the
impact they can have on the system overall. We point out
that Dalvik applications have access to native libraries (via
JNI), and thus to the randomization offsets that have been
applied in the system.

5. DESIGN AND IMPLEMENTATION
The Android environment prevents existing approaches

to ASLR. Our goal is to design a new light-weight ASLR
strategy that is well suited for constrained environments of
this type. Our approach applies equally well to other mobile
operating systems.



5.1 Background
Modern compilers like GCC can generate code which is

position-independent (PIC). PIC object files have all of their
location-sensitive offsets listed in relocation sections: these
lists are later used to “fix” the library to a location at load
time. Shared libraries built with PIC code can be linked as
ET DYN ELF objects, which means that they can be loaded
at arbitrary addresses. In Linux, ld.so is a special shared
library (an ET DYN object itself) which is responsible for
dynamically linking any other libraries that must be loaded
into a process. Notably ld.so is able to relocate itself, which
is not trivial to implement.

In contrast to shared libraries, base executable files are
often built as ET EXEC objects, which must be loaded at
a specific location known during the link process. On some
platforms base executables can also be linked as ET DYN,
which makes it possible to load them at an arbitrary location
in the process address space. Such executable objects are
referred to as PIE (position-independent executables).

Effects of prelinking.
In the absence of any prelinking, position-independent

(ET DYN) ELF objects can be loaded at arbitrary loca-
tions in the process address space: this is the general idea
in PaX. In contrast, for Android:

• Shared libraries are PIC, but the majority of them are
prelinked to specific addresses.

• Base executables are compiled as PIC, but not linked
as PIE.

• The dynamic linker is linked at a fixed address because
it is simpler than ld.so and is not able to relocate itself.

On the one hand, the extensive use of PIC code in the
platform comes at a minimal cost to performance due to the
extensive prelinking performed. On the other hand, PIC
code allows for easier patching of software: only the mod-
ules affected by a bug fix need to be recompiled, and all
the rest can simply be prelinked again, lowering the risk of
introducing new bugs in an incremental update.

5.2 Design Idea
For a base executable object that was compiled to be PIC,

linking to a fixed base address consists of resolving primar-
ily internal relocations (usually in the GOT section) using
that fixed address and removing the entries from the reloca-
tion table; for shared libraries, prelinking has a similar effect
(Figure 1), outlined in Section 3.

We now make three important observations. First, PIC
binaries can be rebased even after prelinking. At prelinking
time we can save the address of all locations where apriori
inserted hardcoded addresses (this is exactly the set of local
relocations). Then, to shift the binary to a new location
we can loop over the list of addresses and add the ASLR
random offset to the contents at each of them.

Second, binaries can be trivially reverted to their original
state to support software updates. This is necessary in the
case of incremental updates, where the hashes of patched
files are checked to ensure the device being updated has the
expected build. To revert randomization, we simply over-
write the contents at the known locations in each file with
their known, build-time contents.

Third, randomization is possible at software update time
(rather than on every boot or process restart). This enables
a light-weight, user-space implementation, and in Section 6
we argue that the loss in terms of security is small.

Retouching design.
Based on the observations made earlier, the process of re-

touching is spread over all stages of building and deploying
a software update. During a build, we retain some of the re-
location data that is normally lost after the build completes
(file offsets and, for convenience, a copy of the original con-
tents at those offsets). The data is retained in a separate
area at the end of each binary. When packaging OTA up-
dates, the retained relocation data is still in the executable
files; in addition, the OTA update script now includes a
command which explicitly applies randomization (or deran-
domization if desired) to all relevant files. Finally, when the
OTA update script is run on each target device, randomiza-
tion (or derandomization) is executed.

During normal device boot there are no execution flow
changes: the affected binary objects are simply loaded to
their randomized addresses instead of the nominal addresses
that were used in the original build.

5.3 Implementation
In order to assess the feasibility of retouching we have im-

plemented ASLR for the Android platform, and contributed
the code to the Android Open Source Project (AOSP). We
start with a discussion of shared libraries, and then expand
to base executables and the dynamic linker.

Shared libraries.
Randomizing libraries during software updates is prefer-

able because it does not eliminate the performance gains
offered by prelinking in the first place. In addition, update
time randomization is performed in recovery mode in which
the main operating system image is not locked and can be
safely modified.

The randomization process consists of the following four
steps:

Step 1: Keeping track of relocation lists.
Prelinking in the Android platforms involves resolving in-

ternal relocations for each shared library (Table 1). Sub-
sequently, during randomization these previously resolved
relocations must be adjusted (retouched) by the difference

Figure 1: Prelinking resolves internal relocations
while leaving external ones intact.



Record Type Format Description

2 bytes 1S2C13 2-bit offset (4, 8, 12, 16)
13-bit content delta (signed)

3 bytes 01S2C20 2-bit offset (see above)
20-bit content delta (signed)

8 bytes 00S30C32 absolute offset, max 230 − 1
absolute contents (4 bytes)

Table 3: The three record formats used in retouch
file compression.

between the “default” prelink location of the library and the
new, randomized location.

By the end of the platform build process, relocations that
have been prelinked are stripped from the final shared li-
brary files. In order for retouching to succeed during a de-
vice update, we must have the list of relocations available
at that time. We achieve this by modifying apriori, the An-
droid prelinker, to output a list of file offsets that have been
prelinked. For each library, this list is stored at the end of
the target binary file.

Step 2: Compressing retouch data.
Even though we only need to keep a small amount of data

for each prelinked relocation (a file offset, and contents at
that offset), the aggregate size of retouch data ends up being
substantial. We came up with a simple variable record size
encoding in order to minimize the size of the OTA update
package and the amount of additional space required on the
device.

Each prelinked relocation is nominally eight bytes in size:
a four-byte file offset, and four bytes of original contents.
In our compression scheme, each relocation corresponds to
a 2, 3, or 8-byte record, essentially implementing a form of
Huffman encoding based on the following observations:

• Relocation offsets and contents are 4-byte aligned.

• Relocation offsets are output in order and tend to be
clustered closely together.

• Relocation contents also tend to exhibit proximity, but
to a lesser degree.

Specifically a 2-byte record will be used for a relocation
if it is located within 4 to 16 bytes from the previous one,
and has contents within 212 − 1 in absolute value. A 3-
byte record will be used if the relocation is located within
4 to 16 bytes, with contents that differ by no more than
219 − 1. As a fallback, the relocation can use up a full 8
bytes, with the most significant two bits of the offset used
to indicate this type of record (limiting the file size of shared
libraries to 230 − 1 bytes). Record formats are specified in
Table 3. Compression reduces the amount of space needed
for retained relocation data by approximately 60%.

Step 3: OTA update file generation.
After the build is complete, the OTA update file is gen-

erated, and we ensure that an instruction to retouch all bi-
naries is always included. Alternatively, the instruction can
be to undo retouching (in case derandomization is required
for some reason).

Step 4: OTA deployment on target device.
OTA updates are executed on Android phones in the fol-

lowing steps: reboot into recovery mode, check filesystem
digest (only in incremental updates), extract files from up-
date package (zip), reboot into the updated main image.

In our implementation, randomization involves on-device
modification of all shared library files. As a consequence,
for incremental updates we have to mask the randomization
so that the filesystem digest check will succeed. This is why
every list of retouch entries contains the prelinked relocation
offsets and original contents at those locations: before com-
puting a digest of the software image the update script can
restore in memory each binary to its original state. Another
benefit of this approach is evident during randomization: re-
touch data is never modified, and should randomization be
interrupted in the middle, the process can simply be rerun,
generating a new randomization offset and overwriting any
modified shared library contents. (In reality, this process is
a bit more complicated due to flash filesystem unreliability
that goes beyond what is normally seen with a hard-disk
based filesystems. For brevity, we skip the details here.)

With ASLR, software update proceeds as follows (randomization-
related steps are in bold):

• The device is booted in recovery mode.

• (Incremental updates only) After masking random-
ization in memory, a digest of the existing contents
of each patched file is checked against the digest in-
cluded in the update. The update proceeds only if
there is a match: this ensures that an incremental up-
date will only be applied to the appropriate build it
was created against.

• Files are extracted from the update and copied to their
destinations, for example in the /system directory. (This
includes shared libraries about to be retouched.)

• Retouch data are used to randomize the pre-
linked relocations in specified binaries (all pre-
linked shared libraries in the first release of re-
touching, and eventually all binaries). First, a
random offset is generated, then used to shift
all the binaries.

• The device can now be rebooted into the new, updated
software build.

Randomizing the base executables and dynamic linker.

Base executable offset randomization is possible by port-
ing existing functionality e.g. from the PaX project, however
this is challenging for a number of practical reasons.

Firstly, Android executables are not readily linked as ET DYN
ELF objects, but rather are of the ET EXEC type (in other
words, even though the code is position independent via the
“-pic” compiler option, the resulting executables are not po-
sition independent); retouching allows us to navigate around
this hurdle.

Second, implementing the PaX shadow copy technique for
ET EXEC binaries would require kernel changes difficult to
open-source for the ARM architecture, while all the changes



we introduce are in user-space and in the platform build
system.

The third, and last obstacle is that the Linux dynamic
linker ld.so is randomized in PaX via changing the mmap
base. In contrast, the Android linker is much simpler and
must exist at a predefined address in memory, fixed at build
time. Here once again retouching comes to the rescue.

Our implementation of retouching for base executable and
linker address randomization requires two separate builds of
each executable, and proceeds in the following steps:

• Perform a build to the default base address (0x8000
for executables, and 0xB0000100 for the linker).

• Save the output binary.

• Perform a build to a new base address (e.g. 0xFF8000,
and 0xB0FF0100 for the linker).

• Run the retouch-bindiff tool on the two builds of the
same binary, which outputs a list of retouch entries
that can be appended to the binary.

• (During OTA update) Retouch using the binary file
generated at build time. Same approach as the one
used for libraries.

The retouch-bindiff tool simply takes two input files and
finds the 4-byte file records that differ, outputting their off-
sets and contents. The tool also performs a sanity check to
ensure that the provided base offset difference (0xFF0000
for the examples above) is exactly equal to the difference
at each record. In our experiments, out of all the executa-
bles present on the Eclair branch of AOSP the sanity check
failed only for the debuggerd binary, which has some base
offset-dependent data compiled in. This executable serves
to gather crash data from the device, and can easily be ex-
cluded from randomization without introducing vulnerabil-
ity in the system.

In its current form retouch-bindiff cab be impacted by
changes in compilation flags or implementation. For exam-
ple, if different types of relocations are created during com-
pilation, the tool may not be able to generate the correct
type of retouch entry. Ideally, base executable and dynamic
linker randomization should be implemented by retaining re-
location data during the linking stage and converting that to
retouch entries, eliminating any guesswork and the inconve-
nience of double compilation introduced by retouch-bindiff.

5.4 Sources of Randomness
When we generate a random offset during the update pro-

cess, we use two sources of randomness. The first one is
/dev/random, which contains random bits saved across re-
boots. Note that randomization happens during software
update, which means that the device has been operational
for some period of time and has been able to collect some
entropy.

The second source of randomness we use is system time.
While time is not truly random, the clock reading during
updates will tend to be random across the population of
devices (Android phones will not automatically reboot when
an update is being deployed by the carrier). This means,
that without prior knowledge of the attacked device, the
low-order bits of the system time during the last update will
look random to the attacker.

The general problem of gathering entropy on mobile de-
vices is a topic that has received attention on its own, and
[13] evaluates several approaches. Randomization during de-
vice manufacture is also a possibility which can be explored
in the future.

6. EVALUATION
To evaluate our new approach to ASLR we discuss the

amount of work to mount a brute-force guessing attack, the
additional storage requirements on the device, and the neg-
ligible impact on performance.

6.1 Guessing Attacks
Existing ASLR implementations randomize offsets at boot

or run-time. Our retouching approach randomizes offsets
only at system update time. We briefly argue that from
the point of view of the attacker this difference has minimal
impact — it only makes a brute force guessing attack easier
by a factor of 2 in expectation.

Consider a randomization space of size N (in other words,
the number of different offsets for the target executable code
post-randomization is N). If the randomization offset is
constantly updated at boot or run-time then an attacker
making random guesses at the randomization value will need
N random attempts in expectation before making a correct
guess.

With randomization at install time and during software
update (which is less frequent than boot-time randomiza-
tion), the attacker is guaranteed to succeed after N at-
tempts, and is expected to succeed in (N + 1)/2 attempts.
This factor of 2 is the result of the difference between sam-
pling with replacement and sampling without replacement.

Randomizing during software updates has a number of
advantages over run-time randomization. First, it is less
likely to corrupt the device because it happens in a simple
“recovery boot” environment in which platform executables
can be safely written. In addition, the kernel need not get
involved in this process, and the boot time savings that pre-
linking affords can be preserved (i.e., no additional run-time
relocation is necessary).

Entropy.
In our initial implementation we limit ourselves to 10 bits

of entropy for each base address (executable, prelinked li-
braries), and 8 bits for the dynamic linker. We do this be-
cause of space constraints and to ensure system stability; the
number of bits used can be revised in the future. Table 4
shows the default address space layout of an Android pro-
cess, along with the maximum randomization offset that we
add or subtract. In Table 5 we show the significant bits of
the offsets generated by the randomization code over several
uploads of an ASLR-enabled package. In the actual retouch-
ing, these offsets are multiplied by 4096 for shared libraries
and base binaries and 256 for the dynamic linker.

6.2 Storage Impact
We require 426KB of space to store randomization data

for shared libraries in /system/lib (averaging about 3.3 bytes
per relocation entry). For comparison, the actual libraries
take up 24.63MB on disk, and thus the storage overhead is
less than 2%. Table 6 summarizes these numbers against a
non-prelinked, non-retouched baseline build.



Area Purpose Location Randomization

executable 0x00000000 + 0x003FF000
stacks 0x10000000
mmap 0x40000000
shared libraries 0x80000000
prelinked libraries 0x9A100000 - 0x003FF000
linker 0xB0000100 + 0x0000FF00
thread 0 stack 0xB0100000
kernel 0xC0000000

Table 4: Default address space layout in Android.
Note that the prelinked library area is offset down-
ward, to avoid overlapping with the linker (we
can do this because addresses from 0x90000000 to
0xB0000000 are dedicated to prelinked libraries).

Run # Value (10 bits) Run # Value (10 bits)

1 0011000011 7 1001101001
2 1010010101 8 1000011000
3 1100011100 9 1110100000
4 1101100100 10 1001001011
5 1010000001 11 1010010001
6 0011111101 12 0011110110

Table 5: Randomization offsets generated by using
/dev/random and the current time.

The impact of retouching on OTA update package size
is smaller than that on the filesystem (250KB added), and
incremental updates (which are typically used) will be sub-
stantially less impacted because only changed binaries need
to have their retouch data patched, and that can also be
done incrementally.

We estimate that if base executables and the dynamic
linker are to be retouched, there will be about 52K additional
retouch entries, which would add approximately 170KB to
the space required in the OTA update and the filesystem,
bringing the total storage overhead to 0.8MB.

6.3 Performance Impact
The impact of retouch file generation on build time is neg-

ligible. OTA updates take 10 additional seconds to retouch
(randomize) shared libraries, and after that there is no per-
formance impact at boot or run-time.

7. DETECTING ASLR ATTACKS: CRASH
STACK ANALYSIS

The difficulty of brute-forcing ASLR implementations has
been studied extensively: Shacham et al. [23] demonstrate

Build Type /system/lib OTA
Size (MB) Size (MB)

regular 25.63 40.96
prelinked (default) 24.63 40.75
prelinked and retouched 25.35 41.01

Table 6: Storage space impact of prelinking and re-
touching vs. a regular, non-prelinked build.

No ASLR (@-0) ASLR (@744)
Offset Result Offset Result

0 correct 744 correct
1 crash (pc@-28) 745 crash (pc@-28)
2 crash (pc@-1) 746 crash (pc@-1)
3 crash (fr#2@6) 747 crash (fr#2@6)
4 crash (lr@4) 748 crash (lr@4)
5 infinite loop 749 infinite loop
6 crash (lr@-6) 750 crash (lr@-6)
7 stack corrupt 751 stack corrupt
8 crash (pc@-1) 752 crash (pc@-1)
9 crash (pc@-1) 753 crash (pc@-1)

10 crash (pc@9) 754 crash (pc@9)

Table 7: Results of simulated attack attempting to
call exit(). The nominal (non-randomized) location
was 0xAFD1977D. The crash results indicate the re-
ported location of the PC, LR, or stack frame #2 re-
turn address compared to the target address for the
exec() function, thus for example “pc@-28” means
that at the time of the crash the PC contained the
attempted jump address minus 28.

how a process can be derandomized relatively quickly on a
32-bit OS with PaX enabled. While 64-bit address spaces
make it harder to crack randomization, the fundamental con-
cern about how much each element of the address space is
randomized remains valid. In addition, 64-bit addresses are
simply not available on many platforms that are of interest
today and in the foreseeable future, including most that run
the Android OS.

For massively deployed, networked platforms there is an
additional risk. An attacker who chooses to keep a low pro-
file can try to guess the randomization offset of a target
device only once. While most of the time the guess will be
unsuccessful, about 1/2n of the targets will be compromised,
where n is the number of bits of randomness introduced. For
example if n = 8, one out of every 256 devices will be com-
promised, which can be a significant number.

We chose to tackle the problem of ASLR brute-forcing
by focusing on detection by the OS. In related work, segv-
guard [21] attempts to do this in a very basic way by throt-
tling the rate at which a process can be restarted on a sin-
gle machine. The key observation is that brute-forcing in-
evitably leads to a significant number of process crashes be-
fore the attack succeeds. Importantly, we expect that the
crash patterns are mostly invariant to relocation: library
code crashes in a similar way regardless of where the tar-
get library is relocated. This insight leads to a detection
algorithm which is much more reliable than the one used by
segvguard, and which can also be applied in a centralized
manner to detect low-profile brute-forcing attempts.

When a process crashes, it does so at a specific address of
the program counter (PC). It is reasonable to expect that
during unsuccessful ASLR brute-forcing attempts the ad-
dress of the crash will be closely related to the guessed ad-
dress of the jump. For example, if the function being ex-
ploited is at the non-randomized address 0xAD000000 and we
guess incorrectly that it has been randomized to 0xAD002000,
we expect the crash to happen with a PC value close to
0xAD002000. The reasoning is that we can only execute a



few instructions at a random position in memory without
triggering a segmentation violation. Even more frequently
the crash will be immediate due to an attempt to execute
instructions from a non-executable memory page. It turns
out that this idea is applicable to the ARM architecture if
we also take into account the link register (LR) which com-
monly holds the return address when leaf functions are ex-
ecuted (this optimization avoids having to access the stack
when making most leaf function calls). In our tests, during
most ASLR brute-forcing crashes one of the two registers
contains an address which is very close to the one that was
guessed (Table 7).

Crash address traces.
In order to detect ASLR brute-forcing, we collected crash

reports, and grouped crash addresses (PC and LR values) by
their least significant 12 bits into traces. For every trace we
counted the number of distinct addresses with the intuition
that large traces will be present exactly when an attack is
in progress. Our experiments confirm this (Section 7.2).

Android tombstones.
The Android runtime environment creates a crash dump

file (called a tombstone) each time a process in the system
exits abnormally. In addition, customer devices can report
crashes to central servers, making a limited amount of in-
formation available for analysis (this information is retained
only for a short time). We use these mechanisms to evaluate
our crash stack analysis technique.

Figure 2: An attack guessing the same address
over multiple randomized devices will manifest it-
self as crashes at the same offset on multiple pages:
one long trace due to the frequency of immediate
crashes at the called address. In this case, the at-
tacker jumps to address 0xAFD1977D, and crashes
at 0xAFD1B77C and 0xAFD2177C are observed on
the two randomized devices on the right, after the
PC in each report is derandomized. An attack mak-
ing different guesses will create multiple long traces,
each matching a particular crash behavior such as
“pc@-28” or “lr@4” (not shown), in addition to the
most frequent “pc@-1” behavior.

7.1 Evaluation via Simulated Attacks
We wrote a small piece of simulated attack code which at-

tempts to execute the exit() function from libc by guessing

its randomization offset. A successful run is one which pro-
duces the supplied exit code. We executed the attack code
on a non-randomized system as well as on several random-
ized instances. Representative results are shown in Table 7.
Clearly crash address patterns are retained across random-
ization, yielding identical crash offsets relative to the guessed
address during brute-forcing. The pigeonhole principle im-
plies that if a sufficient number of devices are attacked (e.g.
a multiple of the size of the randomization space—several
thousand in our case), we are guaranteed to see a long crash
trace for at least one page offset: an attacker has no apriori
information about the randomization at each device, so his
guess about the address of the target code will be spread
over the whole space of randomization offsets, when taken
relative to the randomization of each device (see the example
in Figure 2, based on the data in Table 7). This holds even
when the attacker is making exactly the same guess across
all target devices (a “normal” process crash will rarely, if
ever, behave this way: the crash location will be consistently
offset from the randomization base).

7.2 Evaluation Using Real Crash Reports
In order to estimate the likelihood of false positives gen-

erated by our crash analysis algorithm, we used the set of
all 6805 crash reports (from close to 5000 different devices),
generated by the system_server process on a specific build
of the Android operating system. These reports did not
contain any identifying information—in fact, the only data
available was the program counter (PC), link register (LR),
and return addresses in all stack frames at the time of the
crash.

Our main goal was to confirm that in normal execution
(without ASLR or brute-forcing attacks) crash address traces
are short, and thus easily distinguished from those expected
in attack scenarios. The longest trace we found had a length
of 4 (Table 8), while any successful attack that attempts
to brute-force the current ASLR implementation will in-
evitably create a trace of size close to 1024 (the number of
different randomization offsets used in our implementation)
over a relatively small number of attacked devices. Thus,
crash address trace size is an excellent indicator that can be
used to detect ASLR derandomization attempts.

7.3 Implementation Notes
In our experiments we have evaluated crash stack analysis

deployed as a cloud service which can continually monitor
crash reports from user devices, grouping the reports by
device ID, process name, and build number, and looking
for telltale crash address traces.

Local detection.
Crash stack analysis can be also run locally on a device,

in order to detect and immediately block attempted ASLR
brute-forcing. Such attempts carry a signature which is dis-
tinct from that of a process repeatedly crashing on some
error condition. In this context, blocking the attack can in-
volve preventing the automatic restart of the crashing pro-
cess.

In order to implement local detection, the algorithm for
building crash address traces needs to be modified. While it
may be sufficient to look for process tombstones that match
exactly on their 12 least-significant bits but differ on the
next 10, looking at similar offsets might yield more accurate



Offset (bits 0-11) Address Library

0xCF4 0xAC04CCF4 libskia.so
0xAD012CF4 libdvm.so
0xAD035CF4 libdvm.so
0xAD214CF4 libnativehelper.so

0xCB8 0xAD00ECB8 libdvm.so
0xAD018CB8 libdvm.so
0xAD041CB8 libdvm.so

0x95C 0xAD00F95C libdvm-ARM.so
0xAD01395C libdvm.so
0xAD3EB95C libandroid runtime.so

0x260 0xAC072260 libOpenVG CM.so
0xAC08A260 libOpenVG CM.so
0xAF90B260 libcutils.so

Table 8: Largest crash address traces, listed by tag,
obtained from 6805 actual device crash reports for
system_server. Small trace size indicates no ASLR
brute-forcing (as expected).

detection. The reason for this is that not all crashes happen
at exactly the same distance from the guessed function ad-
dress (Table 7), and at the same time on a single device it
is unlikely that a “regular” crash will exhibit a crash pattern
with similar page offsets in a number of different memory
pages.

Protecting user privacy.
Central reporting of device information such as crash data,

always has the potential of violating user privacy. In An-
droid, there are several safeguards: first, crash reports con-
tain only a minimum amount of data necessary to identify
the location of the problem: register and stack contents, and
minimal memory contents pointed to by instruction regis-
ters such as LR and PC in ARM. Second, reports are only
retained for a small amount of time, on the order of days.
Finally, access to reports is highly restricted even within the
Android team. Crash stack analysis can work within the ex-
isting privacy safeguards, without the need to disclose any
additional device or user information.

Reacting to attacks.
The primary use of crash stack analysis is to identify at-

tacks that are in progress—almost in real time. There could
be a variety of responses to such attacks: from quickly find-
ing and patching the root cause (the vulnerability which
made the brute-force ASLR attack possible in the first place),
to restricting device access at the network level with the co-
operation of carriers, or even alerting potentially affected
users.

8. EXTENSIONS AND LIMITATIONS
We briefly mention a few extensions of the retouch ap-

proach and some limitations which may encourage further
work.

Same random offset across processes.
A limitation of all major ASLR implementations to date [17]

including ours, is that all processes on a single device have
the same shared library layout. This is necessary to not

effect system performance. To exploit this limitation, how-
ever, the attacker must already have a foothold on the de-
vice, which is not the intended threat model for ASLR.

Not using ELF utilities.
Retouching can be performed by retaining all relocation

information for shared libraries and prelinking at update
time. At that time base executables could also be linked
at a randomized address. However, the space overhead of
such implementation would be substantial, due to the larger
(uncompressed) size of relocation sections and the need to
include ELF libraries and a linker in the updater binary. The
added complexity would also be significant as there would
have to be a method for undoing the randomization to ac-
commodate future incremental updates.

Non-prelinked libraries and mmap randomization.
While our retouching technique is applicable to non-prelinked

shared libraries, randomization for this area of memory is
best achieved via the PaX approach: by randomizing the
mmap base. This protection is already in place, and also
extends to file data mapped by processes. Additionally, the
majority of shared libraries in Android are already prelinked,
and the expectation is that with time non-prelinked libraries
will become increasingly rare.

Recent advances in attack techniques, such as JIT spray-
ing [4], have cast new doubts about the effectiveness of
ASLR in preventing exploits. We note that randomization of
the mmap region in the process address space effectively neu-
tralizes such concerns: the Dalvik VM uses a small mmap’ed
area to store executable JIT output, and thus inherits the
benefits of randomization.

8.1 Heap and Stack Randomization
So far we focused on randomization of executable memory

because the heap and stack areas of a process are already
randomized via traditional techniques. For example, the An-
droid kernel already performs stack randomization for each
process. Heap randomization is performed by either ran-
domizing the location of brk or by modifying malloc() to
allocate space randomly. Additional pointer protection fea-
tures have been available for several years, both in allocator
implementations and as compile-time options [6]. Android
uses dlmalloc which offers some overflow protection for al-
located chunks, and ProPolice [9] which compiles the use of
stack canaries into native binaries.

Stack randomization in userspace.
Since retouching requires only userspace OS modifications,

we also explored userspace techniques for stack random-
ization. One approach is to modify the code in bionic/

linker/arch/arm/begin.S used as a prologue in the linker
binary. This code normally invokes linker init(), which in
turn loads the base executable and returns its address. We
modified this prologue code in begin.S to add a random
number of harmless additional lines to the process environ-
ment strings before invoking the dynamic linker. The re-
sulting executable prologue looks as follows:

_start:

/* BEGIN RANDOMIZATION CODE */

mov r0, sp

mov r2, sp



sub r2, r2, <RAND>

aslr_args:

ldr r1, [r0]

str r1, [r2]

add r0, r0, #4

add r2, r2, #4

cmp r1, #0

bne aslr_args

sub sp, sp, <RAND>

/* add more env[] strings */

adr r1, ASLR_ENV_PAD

aslr_pad:

str r1, [r2]

add r2, r2, #4

cmp r2, r0

bne aslr_pad

/* END RANDOMIZATION CODE */

/* original code */

mov r0, sp

mov r1, #0

bl __linker_init

/* linker init returns the

_entry address in the

main image */

mov pc, r0

.globl ASLR_ENV_PAD

ASLR_ENV_PAD:

.ascii "ASLR_ENV_PAD=1\0"

Since the environment is on the stack, this has the effect
of shifting the process stack by a small, random number of
bytes (note that here we don’t specify the source of ran-
domness; <RAND> stands for a register that holds a random
value, perhaps based on the current time and/or stack con-
tents). We verified that with this change, using an arbitrary
4-byte aligned random offset, the system boots successfully
and process stacks are shifted down as expected. The draw-
back of performing this type of stack randomization is that
the added offset can only be relatively small—on the order
of hundreds or thousands of bytes, and thus may not prevent
some buffer-overrun attacks. The existing kernel implemen-
tation is more robust as it randomizes the more significant
bits in the stack location while it also does not waste phys-
ical memory.

Applicability to other platforms.
Since most code running on Android devices is written

in Java, and thus not vulnerable to buffer-overflow attacks,
mobile ASLR is even more applicable to platforms that run
primarily native applications, such as iOS. While we have
used Android to develop and demonstrate our approach,
we expect broader adoption across the different smartphone
ecosystems.

9. RELATED WORK
For real impact on security, ASLR must be deployed in

conjunction with protections against injecting and executing
code on the system. Our work is complementary to current
work on write-protecting executable pages in Android.

In spirit, retouching is related to Address Space Layout

Permutation (ASLP), proposed in [12]. ASLP performs mod-
ifications on base executable files at launch time by using
the retained relocation section in each executable. How-
ever, for shared libraries, ASLP defaults to the standard
kernel-based approach of mmap() randomization, without
performing any fine-grained permutation of code. This ap-
proach cannot work in Android due to prelinking of shared
libraries. Our retouching approach can randomize shared
libraries and works well with prelinking, without requiring
any kernel modifications or executable file editing at run-
time; in addition, retouching addresses the randomization
of the smaller, non-self-relocating dynamic linker in Android
called linker.

Retouching is also conceptually similar to the Windows
utility rebase [2], which allows a user to manually move
the starting offset of an executable or DLL file by execut-
ing relocation in advance. However rebase has no facility for
supporting software updates, prelinked libraries, or random-
ization. The relevance of rebase has declined once Windows
implemented ASLR.

In related work, address obfuscation has been proposed
as a way to achieve higher levels of randomization, beyond
those achievable in ASLR [3]. Similar to address obfusca-
tion, retouching starts during build time and completes at
install. In contrast to it, retouching does not involve any
complicated transformations on the code or data sections.
This should result in lower overall risk at deployment as
well as possibly better performance, since shifting the whole
executable object by a multiple of the CPU page size is gen-
erally expected to have no impact on caching. A similar
technique called code islands has been proposed, targeting
large multithreaded server deployments [27].

Randomization can reach beyond the layout of a single,
user-space process. The kernel stack can be also randomized,
as well as system calls [5] and even the CPU instruction set
[11]. Retouching is complementary to all of these mecha-
nisms, providing an efficient, effective, and simple way to
reduce the attack surface of processes.

A different thread of work has investigated control-flow
hijacking prevention in embedded devices lacking modern
CPU capabilities such as a MMU [10]. We note that in their
architecture smartphones are more similar to desktop PCs
than simple microcontroller-based devices. In this sense,
desktop-grade protection techniques are more relevant to our
work.

Privilege escalation techniques have also been explored in
the context of Android inter-process communication via the
Intent mechanism [7]. Our work is inherently at a lower level
in the stack, however ASLR can still help prevent applica-
tions from being exploited through native code vulnerabili-
ties, thus closing some of the possible routes to abuse.

Finally, ASLR has been evaluated in the past, and of-
ten found to have limited effectiveness [23], or to be poorly
implemented [15, 8]. Shacham’s Return-Oriented Program-
ming technique [22] demonstrates that preventing code in-
jection offers little protection on its own; in addition, return-
oriented programming can be used when some executable
pages are left non-randomized—this highlights the need to
randomize all binary code in the system. In Section 7 we
show that crash stack analysis can be used to rapidly detect
and block ASLR brute-forcing. At the same time, control
over all the shipping native code in Android makes complete
randomization of the process address space feasible; this will



help avoid many of the mistakes or omissions made by early
ASLR implementations for the desktop.

10. CONCLUSION
This paper introduces a new technique for implementing

ASLR, which is particularly well-suited to the constraints
imposed by modern consumer-oriented mobile devices. Our
approach, called retouching, can randomize the location of
all native executable code without kernel modifications, and
without erasing the savings in boot time afforded by pre-
linking. We implemented retouching-based ASLR on the
Android platform, and evaluated its impact on the system:
from building to OTA updates and execution. We also de-
veloped and evaluated crash stack analysis, a technique for
detecting ASLR brute-forcing attempts which is the only one
we are aware of that uses crash address information to reli-
ably detect targeted attacks. We conclude that retouching,
in combination with crash stack analysis, is a robust ASLR
implementation, resilient to brute-force derandomization.
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