
Diary of a reverse-engineer

Because we like to play with weird things.

RSS

Search

Navigate…

Blog
Archives
About
Presentations

Taming a Wild Nanomite-protected MIPS Binary With
Symbolic Execution: No Such Crackme
Oct 11th, 2014

As last year, the French conference No Such Con returns for its second edition in Paris from the 19th
of November until the 21th of November. And again, the brilliant Eloi Vanderbeken & his mates at
Synacktiv put together a series of three security challenges especially for this occasion. Apparently,
the three tasks have already been solved by awesome @0xfab which won the competition, hats off :).

To be honest I couldn’t resist to try at least the first step, as I know that Eloi always builds really
twisted and nice binaries ; so I figured I should just give it a go!

But this time we are trying something different though: this post has been co-authored by both
Emilien Girault (@emiliengirault) and I. As we have slightly different solutions, we figured it would
be a good idea to write those up inside a single post. This article starts with an introduction to the
challenge and will then fork, presenting my solution and his.

As the article is quite long, here is the complete table of contents:

REcon: Here be dragons
MIPS 101

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

1 sur 31 04/03/2018 à 18:56

Setting up a proper debugging environment
The big picture

Let’s get our hands dirty
Father’s in charge

Nanomites 101
How the father works

Gearing up: Writing a symbolic executing engine
Back into the battlefield

Extracting the function that generates the magic value from the son program
counter
Extracting the function that generates the new program counter from the second
magic value
Putting it all together: building a function that computes the new program counter
of the son

Unscramble the code like a sir
Attacking the son: the last man standing

Alternative solution
Shortcut #1 : Tracing the parent with GDB

Quick recap of the parent’s behaviour
First attempt at tracing
Getting a clean trace

Shortcut #2 : Symbolic execution using Miasm
Miasm symbolic execution 101
Generating the child’s algorithm

Solving with Z3
Alternative solution – conclusion

War’s over, the final words

REcon: Here be dragons
This part is just here to get things started: how to have a debugging environment, to know a bit more
about MIPS and to know a bit more what the binary is actually doing.

MIPS 101
The first interesting detail about this challenge is that it is a MIPS binary ; it’s really kind of exotic
for me. I’m mainly looking at Intel assembly, so having the opportunity to look at an unknown
architecture is always appealing. You know it’s like discovering a new little toy, so I just couldn’t
help myself & started to read the MIPS basics.

This part is going to describe only the essential information you need to both understand and crack
wide open the binary ; and as I said I am not a MIPS expert, at all. From what I have seen though,
this is fairly similar to what you can see on an Intel x86 CPU:

It is little endian (note that it also exists a big-endian version but it won’t be covered in this
post),
It has way more general purpose registers,
The calling convention is similar to __fastcall: you pass arguments via registers, and get the
return of the function in $v0,
Unlike x86, MIPS is RISC, so much simpler to take in hand (trust me on that one),
Of course, there is an IDA processor,

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

2 sur 31 04/03/2018 à 18:56

Linux and the regular tools also exists for MIPS so we will be able to use the “normal” tools
we are used to use,
It also uses a stack, much less than x86 though as most of the things happening are in registers
(in the challenge at least).

Setting up a proper debugging environment
The answer to that question is Qemu, as expected. You can even download already fully prepared &
working Debian images on aurel32’s website.

get a working qemu environment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

overclok@wildout:~/chall/nsc2014$ wget https://people.debian.org/~aurel32/qemu/mipsel/debian_
overclok@wildout:~/chall/nsc2014$ wget https://people.debian.org/~aurel32/qemu/mipsel/vmlinux
overclok@wildout:~/chall/nsc2014$ cat start_vm.sh
qemu-system-mipsel -M malta -kernel vmlinux-3.2.0-4-4kc-malta -hda debian_wheezy_mipsel_stand
overclok@wildout:~/chall/nsc2014$./start_vm.sh
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 3.2.0-4-4kc-malta (debian-kernel@lists.debian.org
[...]
debian-mipsel login: root
Password:
Last login: Sat Oct 11 00:04:51 UTC 2014 on ttyS0
Linux debian-mipsel 3.2.0-4-4kc-malta #1 Debian 3.2.51-1 mips

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@debian-mipsel:~# uname -a
Linux debian-mipsel 3.2.0-4-4kc-malta #1 Debian 3.2.51-1 mips GNU/Linux

Feel free to install your essentials in the virtual environment, some tools might come handy (it
should take a bit of time to install them though):

aptitude install all-of-the-things

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

root@debian-mipsel:~# aptitude install strace gdb gcc python
root@debian-mipsel:~# wget https://raw.githubusercontent.com/zcutlip/gdbinit-mips/master/gdbi
root@debian-mipsel:~# mv gdbinit-mips ~/.gdbinit
root@debian-mipsel:~# gdb -q /home/user/crackmips
Reading symbols from /home/user/crackmips...(no debugging symbols found)...done.
(gdb) b *main
Breakpoint 1 at 0x402024
(gdb) r 'doar-e ftw'
Starting program: /home/user/crackmips 'doar-e ftw'

[registers]
 V0: 7FFF6D30 V1: 77FEE000 A0: 00000002 A1: 7FFF6DF4
 A2: 7FFF6E00 A3: 0000006C T0: 77F611E4 T1: 0FFFFFFE
 T2: 0000000A T3: 77FF6ED0 T4: 77FE5590 T5: FFFFFFFF
 T6: F0000000 T7: 7FFF6BE8 S0: 00000000 S1: 00000000
 S2: 00000000 S3: 00000000 S4: 004FD268 S5: 004FD148
 S6: 004D0000 S7: 00000063 T8: 77FD7A5C T9: 00402024
 GP: 77F67970 S8: 0000006C HI: 000001A5 LO: 00005E17
 SP: 7FFF6D18 PC: 00402024 RA: 77DF2208

[code]

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

3 sur 31 04/03/2018 à 18:56

22
23
24
25
26
27
28
29

=> 0x402024 <main>: addiu sp,sp,-72
 0x402028 <main+4>: sw ra,68(sp)
 0x40202c <main+8>: sw s8,64(sp)
 0x402030 <main+12>: move s8,sp
 0x402034 <main+16>: sw a0,72(s8)
 0x402038 <main+20>: sw a1,76(s8)
 0x40203c <main+24>: lw v1,72(s8)
 0x402040 <main+28>: li v0,2

And finally you should be able to run the wild beast:

release the beast

1
2
3
4

root@debian-mipsel:~# /home/user/crackmips
usage: /home/user/crackmips password
root@debian-mipsel:~# /home/user/crackmips 'doar-e ftw'
WRONG PASSWORD

Brilliant :–).

The big picture
Now that we have a way of both launching and debugging the challenge, we can open the binary in
IDA and start to understand what type of protection scheme is used. As always at that point, we are
really not interested in details: we just want to understand how it works and what parts we will have
to target to get the good boy message.

After a bit of time in IDA, here is how works the binary:

It checks that the user supplied one argument: the serial1.
It checks that the supplied serial is 48 characters long2.
It converts the string into 6 DWORDs (/!\ pitfall warning: the conversion is a bit strange, be
sure to verify your algorithm)

3.

The beast forks in two:
[Father] It seems, somehow, this one is driving the son, more on that later1.
[Son] After executing a big chunk of code that modifies (in place) the 6 original
DWORDs, they get compared against the following string [Synacktiv + NSC = <3]

2.

[Son] If the comparison succeeds you win, else you loose3.

4.

Basically, we need to find the 6 input DWORDs that are going to generate the following ones in
output: 0x7953205b, 0x6b63616e, 0x20766974, 0x534e202b, 0x203d2043, 0x5d20333c. We also
know that the father is going to interact with its son, so we need to study both codes to be sure to
understand the challenge properly. If you prefer code, here is the big picture in C:

big picture

1
2
3
4
5
6
7
8
9
10

int main(int argc, char *argv[])
{

DWORD serial_dwords[6] = {0};
if(argc != 2)

Usage();

// Conversion
a2i(argv[1], serial_dwords);

pid_t pid = fork();

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

4 sur 31 04/03/2018 à 18:56

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

if(pid != 0)
{

// Father
// a lot of stuff going on here, we will see that later on

}
else
{

// Son
// a lot of stuff going on here, we will see that later on

char *clear = (char*)serial_dwords;
bool win = memcmp(clear, "[Synacktiv + NSC = <3]", 48);
if(win)

GoodBoy();
else

BadBoy();
}

}

Let’s get our hands dirty

Father’s in charge
The first thing I did after having the big picture was to look at the code of the father. Why? The code
seemed a bit simpler than the son’s one, so I figured studying the father would make more sense to
understand what kind of protection we need to subvert. You can even crank up strace to have a
clearer overview of the syscalls used:

strace father

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

root@debian-mipsel:~# strace -i /home/user/crackmips $(python -c 'print "1"*48')
[7734e224] execve("/home/user/crackmips", ["/home/user/crackmips", "1111111111111111111111111
[...]
[77335e70] clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD, child_
[77335e70] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7737052c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7737052c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7733557c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7737052c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7737052c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

5 sur 31 04/03/2018 à 18:56

32
33
34
35
36
37
38
39
40

[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[7737052c] --- SIGCHLD (Child exited) @ 0 (0) ---
[7733557c] waitpid(2539, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGTRAP}], __WALL) = 2539
[7737052c] ptrace(PTRACE_GETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_SETREGS, 2539, 0, 0x7f8f87c4) = 0
[7737052c] ptrace(PTRACE_CONT, 2539, 0, SIG_0) = 0
[...]

That’s an interesting output that I didn’t expect at all actually. What we are seeing here is the father
driving its son by modifying, potentially (we will find out that later), its context every time the son is
SIGTRAPing (note waitpid second argument).

From here, if you are quite familiar with the different existing type of software protections (I’m not
saying I am an expert in this field but I just happened to know that one :-P) you can pretty much
guess what that is: nanomites this is!

Nanomites 101

Namomites are quite a nice protection. Though, it is quite a generic name ; you can really use that
protection scheme in whatever way you like: your imagination is the only limit here. To be honest,
this was the first time I saw this kind of protection implemented on a Unix system ; really good
surprise! It usually works this way:

You have two processes: a driver and a driven ; a father and a son1.
The driver is attaching itself to the driven one with the debug APIs available on the targeted
platform (ptrace here, and CreateProcess/DebugActiveProcess on Windows)

Note that, by design you won’t be able to attach yourself to the son as both Windows
and Linux prevent that (by design): some people call that part the DebugBlocker

1.

You will able to debug the driver though2.

2.

Usually the interesting code is in the son, but again you can do whatever you want. Basically,
you have two rules if you want an efficient protection:

Make sure the driven process can’t run without its driver and that they are really tied to
each other

1.

The strength of the protection is that strong/intimate bound between the two processes2.
Design your algorithm such that removing the driver is really difficult/painful/driving
mad the attacker

3.

3.

The driven process can call/notify the driver by just SIGTRAPing with an int3/break
instruction for example

4.

As I said, I see this protection scheme more like a recipe: you are free to customize it at your
convenience really. If you want to read more on the subject, here is a list of links you should check
out:

Nanomite and Debug Blocker for Linux Applications: It gives a good overview of how you
can get such a protection scheme to work on Linux,
Unpackme I am Famous: This shows you what nanomites look like on Windows in a real
protected product ; done by my mate @w4kfu,
Debug me: Another sweet challenge that uses nanomites on Windows

How the father works

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

6 sur 31 04/03/2018 à 18:56

Now it is time to took into details the father ; here is how it works:

The first thing it does is to waitpid until its son triggers a SIGTRAP
The driver retrieves the CPU context of the son process and more precisely its program
counter: $pc
Then we have a huge block of arithmetic computations. But after spending a bit of time to
study it, we can see that huge block as a black-box function that takes two parameters: the
program counter of the son and some kind of counter value (as this code is going to be
executed in a loop, for each SIGTRAP this variable is going to be incremented). It generates a
single output which is a 32 bits value that I call the first magic value. Let’s not focus on what
the block is actually doing though, we will develop some tool in the next part to deal with that
:–) so let’s keep moving!

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

7 sur 31 04/03/2018 à 18:56

This magic value is then used to find a specific entry in an array of QWORDs (606 QWORDs
which is 6 times the number of break instructions in the son — you will understand that a bit
later don’t worry). Basically, the code is going to loop over every single QWORD of this array
until finding one that has the high DWORD equals to the magic value. From there you get
another magic value which is the lowest DWORD of the matching QWORD.
Another huge block of arithmetic computations is used. Similarly to the first one, we can see it
as a black-box function with two inputs: the second magic value and a round index (the son is
executing its code 6 times, so this round index will start from 0 until 5 — again this will be a
bit clearer when we look at the son, so just keep this detail in your mind). The output of this
function is a 32 bits value. Again, do not study this block, we don’t need it.
The generated value is in fact a valid code address inside the son ; so straight after the

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

8 sur 31 04/03/2018 à 18:56

computation, the father is going to modify the program counter in the previously retrieved
CPU context. Once this is done, it calls ptrace with SETREGS to set the new CPU context of
the son.

This is what roughly is going to be executed every time the son is going to hit a break instruction ;
the father is definitely driving the son. And we can feel it now, the son is going to jump (via its
father) through block of codes that aren’t (necessary) contiguous in memory, so studying the son
code as it is in IDA is quite pointless as those basic blocks aren’t going to be executed in this order.

Long story short, the nanomites are used as some kind of runtime code flow scrambling primitive,
isn’t it exciting? Told you that @elvanderb is crazy :–).

Gearing up: Writing a symbolic executing engine
At that point, I can assure you that we need some tooling: we have studied the binary, we know how
the main parts work and we just need to extract the different equations/formulas used by both the
computation of the son’s program counter and the serial verification algorithm. Basically the engine
is going to be useful to study both the father and the son.

If you are not really familiar with symbolic execution, I recommend you take a little bit of time to
read Breaking Kryptonite’s Obfuscation: A Static Analysis Approach Relying on Symbolic
Execution and check out z3-playground if you are not really familiar with Z3 and its Python
bindings.

This time I decided to not build that engine as an IDA Python script, but just to do everything
myself. Do not be afraid though, even if it sounds scary it is really not: the challenge is a perfect
environment for those kind of things. It doesn’t use a lot of instructions, we don’t need to support
branches and nearly only arithmetic instructions are used.

I also chose to implement this engine in a way that we can also use it as a simple emulator. You can
even use it as a decompiler if you want! The two other interesting points for us are:

Once we run a piece of code in the symbolic engine, we will extract certain computations /
formulas. Thanks to Microsoft’s Z3 we will be able to retrieve input values that will generate
specific output values: this is basically what you gain by using a solver and symbolic variables.

1.

But the other interesting point is that you still can use the extracted Z3 expressions as some
kind of black-box functions. You know what the function is doing, kind of, but you don’t know
how ; and you are not interested in the how. You know the inputs, and the outputs. To obtain a
concrete output value, you can just replace the symbolic variables by concrete values. This is
really handy, especially when you are not only interested in finding input values to generate
specific output values ; sometimes you just want to go both ways :–).

2.

Anyway, after this long theoretical speech let’s have a look at some code. The first important job of
the engine is to be able to parse MIPS assembly: fortunately for us this is really easy. We are directly
feeding plain-text MIPS disassembly directly copied from IDA to our engine:

mini_mips_symexec_engine.py@MiniMipsSymExecEngine._parse_line

1
2
3
4
5
6

def _parse_line(self, line):
addr_seg, instr, rest = line.split(None, 2)
args = rest.split(',')
for i in range(len(args)):
if '#' in args[i]:

args[i], _ = args[i].split(None, 1)

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

9 sur 31 04/03/2018 à 18:56

7
8
9
10
11
12
13

a0, a1, a2 = map(
lambda x: x.strip().replace('$', '') if x is not None else x,
args + [None]*(3 - len(args))

)
_, addr = addr_seg.split(':')
return int(addr, 16), instr, a0, a1, a2

From here you have all the information you need: the instruction and its operands (None if an
operand doesn’t exist as you can have up to 3 operands). The other important job that follows is to
handle the different type of operands ; here are the ones I encountered in the challenge:

General purpose register,
Stack-variable,
Immediate value.

To handle / convert those I created a bunch of dull / helper functions:

mini_mips_symexec_engine.py@MiniMipsSymExecEngine._is_*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def _is_gpr(self, x):
'''Is it a valid GPR name?'''
return x in self.gpr

def _is_imm(self, x):
'''Is it a valid immediate?'''
x = x.replace('loc_', '0x')
try:
int(x, 0)
return True

except:
return False

def _to_imm(self, x):
'''Get an integer from a string immediate'''
if self._is_imm(x):
x = x.replace('loc_', '0x')
return int(x, 0)

return None

def _is_memderef(self, x):
'''Is it a memory dereference?'''
return '(' in x and ')' in x

def is_stackvar(self, x):
'''Is is a stack variable?'''
return ('(fp)' in x and '+' in x) or ('var_' in x and '+' in x)

def to_stackvar(self, x):
'''Get the stack variable name'''
_, var_name = x.split('+')
return var_name.replace('(fp)', '')

Finally, we have to handle every different instructions and their encodings. Of course, you need to
implement only the instructions you want: most likely the ones that are used in the code you are
interested int. In a nutshell, this is the core of the engine. You can also use it to output valid Python/C
lines if you fancy having a decompiler in your sleeve ; might be handy right?

This is what the core function looks like, it is really simple, dumb and so unoptimized ; but at least
it’s clear to me:

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

10 sur 31 04/03/2018 à 18:56

mini_mips_symexec_engine.py@step

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

def step(self):
'''This is the core of the engine -- you are supposed to implement the semantics

 of all the instructions you want to emulate here.'''
line = self.code[self.pc]
addr, instr, a0, a1, a2 = self._parse_line(line)
if instr == 'sw':
if self._is_gpr(a0) and self.is_stackvar(a1) and a2 is None:

var_name = self.to_stackvar(a1)
self.logger.info('%s = $%s', var_name, a0)
self.stack[var_name] = self.gpr[a0]

elif self._is_gpr(a0) and self._is_memderef(a1) and a2 is None:
idx, base = a1.split('(')
base = base.replace('$', '').replace(')', '')
computed_address = self.gpr[base] + self._to_imm(idx)
self.logger.info('[%s + %s] = $%s', base, idx, a0)
self.mem[computed_address] = self.gpr[a0]

else:
raise Exception('sw not implemented')

elif instr == 'lw':
if self._is_gpr(a0) and self.is_stackvar(a1) and a2 is None:

var_name = self.to_stackvar(a1)
if var_name not in self.stack:
self.logger.info(' WARNING: Assuming %s was 0', (var_name,))
self.stack[var_name] = 0

self.logger.info('$%s = %s', a0, var_name)
self.gpr[a0] = self.stack[var_name]

elif self._is_gpr(a0) and self._is_memderef(a1) and a2 is None:
idx, base = a1.split('(')
base = base.replace('$', '').replace(')', '')
computed_address = self.gpr[base] + self._to_imm(idx)
if computed_address not in self.mem:
value = raw_input(' WARNING %.8x is not in your memory store -- what value is there @

else:
value = self.mem[computed_address]

self.logger.info('$%s = [%s+%s]', a0, idx, base)
self.gpr[a0] = value

else:
raise Exception('lw not implemented')

[...]

The first level of if handles the different instructions, the second level of if handles the different
encodings an instruction can have. The self.logger thingy is just my way to save the execution traces
in files to let the console clean:

mini_mips_symexec_engine.py@__init__

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def __init__(self, trace_name):
self.gpr = {
'zero' : 0,
'at' : 0,
'v0' : 0,
'v1' : 0,

[...]
'lo' : 0,
'hi' : 0

}

self.stack = {}
self.pc = 0
self.code = []
self.mem = {}
self.stack_offsets = {}

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

11 sur 31 04/03/2018 à 18:56

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

self.debug = False
self.enable_z3 = False

if os.path.exists('traces') == False:
os.mkdir('traces')

self.logger = logging.getLogger(trace_name)
h = logging.FileHandler(

os.path.join('traces', trace_name),
mode = 'w'

)

h.setFormatter(
logging.Formatter(

'%(levelname)s: %(asctime)s %(funcName)s @ l%(lineno)d -- %(message)s
datefmt = '%Y-%m-%d %H:%M:%S'

)
)

self.logger.setLevel(logging.INFO)
self.logger.addHandler(h)

At that point, if I wanted only an emulator I would be done. But because I want to use Z3 and
symbolic variables I want to get your attention on two common pitfalls that can cost you hours of
debugging (trust me on that one :–():

The first one is that the operator __rshift__ isn’t the logical right shift but the arithmetical one;
which is quite different and can generate results you don’t expect:

LShR VS >>

1
2
3
4
5
6
7
8
9
10

In [1]: from z3 import *

In [2]: simplify(BitVecVal(4, 3) >> 1)
Out[2]: 6

In [3]: simplify(LShR(BitVecVal(4, 3), 1))
Out[3]: 2

In [4]: 4 >> 1
Out[4]: 2

To workaround that I usually define my own _LShR function that does whatever is correct according
to the operand types (yes we could also replace z3.BitVecNumRef.__rshift__ by LShR directly):

mini_mips_symexec_engine@_LShR

1
2
3
4
5
6
7
8
9
10

def _LShR(self, a, b):
'''Useful hook function if you want to run the emulation

 with/without Z3 as LShR is different from >> in Z3'''
if self.enable_z3:
if isinstance(a, long) or isinstance(a, int):

a = BitVecVal(a, 32)
if isinstance(b, long) or isinstance(b, int):

b = BitVecVal(b, 32)
return LShR(a, b)

return a >> b

The other interesting detail to keep in mind is that you can’t have any overflow on BitVecs of
the same size ; the result is automatically truncated. So if you happen to have mathematical

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

12 sur 31 04/03/2018 à 18:56

operations that need to overflow, like a multiplication (this is used in the challenge), you
should store the temporary result in a bigger temporary variable. In my case, I was supposed to
store the overflow inside another register, $hi which is used to store the high DWORD part of
the result. But because I wasn’t storing the result in a bigger BitVec, $hi ended up always equal
to zero which is quite a nice problem when you have to pinpoint this issue in thousands lines
of assembly :–).

mini_mips_symexec_engine@step@multu

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

elif instr == 'multu':
if self._is_gpr(a0) and self._is_gpr(a1) and a2 is None:
self.logger.info('$lo = ($%s * $%s) & 0xffffffff', a0, a1)
self.logger.info('$hi = ($%s * $%s) >> 32', a0, a1)
if self.enable_z3:

a0bis, a1bis = self.gpr[a0], self.gpr[a1]
if isinstance(a0bis, int) or isinstance(a0bis, long):
a0bis = BitVecVal(a0bis, 32)

if isinstance(a1bis, int) or isinstance(a1bis, long):
a1bis = BitVecVal(a1bis, 32)

a064 = ZeroExt(32, a0bis)
a164 = ZeroExt(32, a1bis)
r = a064 * a164
self.gpr['lo'] = Extract(31, 0, r)
self.gpr['hi'] = Extract(63, 32, r)

else:
x = self.gpr[a0] * self.gpr[a1]
self.gpr['lo'] = x & 0xffffffff
self.gpr['hi'] = self._LShR(x, 32)

I think this is it really, you can now impress girls with your brand new shiny toy, check this out:

mini_mips_symexec_engine@main

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

def main(argc, argv):
print '=' * 50
sym = MiniMipsSymExecEngine('donotcare.log')
DO NOT FORGET TO ENABLE Z3 :)
sym.enable_z3 = True
a = BitVec('a', 32)
sym.stack['var'] = a
sym.stack['var2'] = 0xdeadbeef
sym.stack['var3'] = 0x31337
sym.code = '''.doare:DEADBEEF lw $v0, 0x318+var($fp) # Load Word

.doare:DEADBEEF lw $v1, 0x318+var2($fp) # Load Word

.doare:DEADBEEF subu $v0, $v1, $v0 #

.doare:DEADBEEF li $v1, 0x446F8657 # Load Immediate

.doare:DEADBEEF multu $v0, $v1 # Multiply Unsigned

.doare:DEADBEEF mfhi $v1 # Move From HI

.doare:DEADBEEF subu $v0, $v1 # Subtract Unsigned'''
sym.run()

print 'Symbolic mode:'
print 'Resulting equation: %r' % sym.gpr['v0']
print 'Resulting value if `a` is 0xdeadb44: %#.8x' % substitute(

sym.gpr['v0'], (a, BitVecVal(0xdeadb44, 32))
).as_long()

print '=' * 50
emu = MiniMipsSymExecEngine('donotcare.log')
emu.stack = sym.stack
emu.stack['var'] = 0xdeadb44
sym.stack['var2'] = 0xdeadbeef

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

13 sur 31 04/03/2018 à 18:56

30
31
32
33
34
35
36
37

sym.stack['var3'] = 0x31337
emu.code = sym.code
emu.run()

print 'Emulator mode:'
print 'Resulting value when `a` is 0xdeadb44: %#.8x' % emu.gpr['v0']
print '=' * 50
return 1

Which results in:

w00t, emu & symbolic execution works

1
2
3
4
5
6
7
8
9
10
11
12
13
14

PS D:\Codes\NoSuchCon2014> python .\mini_mips_symexec_engine.py
==
Symbolic mode:
Resulting equation: 3735928559 +
4294967295*a +
4294967295*
Extract(63,
 32,
 1148159575*Concat(0, 3735928559 + 4294967295*a))
Resulting value if `a` is 0xdeadb44: 0x98f42d24
==
Emulator mode:
Resulting value when `a` is 0xdeadb44: 0x98f42d24
==

Of course, I didn’t mention a lot of details that still need to be addressed to have something working:
simulating data areas, memory layouts, etc. If you are interested in those, you should read the codes
in my NoSuchCon2014 folder.

Back into the battlefield
Here comes the important bits!

Extracting the function that generates the magic value from the son program
counter

All right, the main objective in this part is to extract the formula that generates the first magic value.
As we said earlier, this big block can be seen as a function that takes two arguments (or symbolic
variables) and generates the magic DWORD in output. The first thing to do is to copy the code
somewhere to feed it to our engine ; I decided to stick all the codes I needed into a separate Python
file called code.py.

code.py

1
2
3
4
5
6
7
8
9
10
11

block_generate_magic_from_pc_son = '''.text:00400B8C lw $v0, 0x318+pc_so
.text:00400B90 sw $v0, 0x318+tmp_pc($fp) # Store Word
.text:00400B94 la $v0, loc_400A78 # Load Address
.text:00400B9C lw $v1, 0x318+tmp_pc($fp) # Load Word
.text:00400BA0 subu $v0, $v1, $v0 # (regs.pc_father - 400A78)
.text:00400BA4 sw $v0, 0x318+tmp_pc($fp) # Store Word
.text:00400BA8 lw $v0, 0x318+var_300($fp) # Load Word
.text:00400BAC li $v1, 0x446F8657 # Load Immediate
.text:00400BB4 multu $v0, $v1 # Multiply Unsigned
.text:00400BB8 mfhi $v1 # Move From HI
.text:00400BBC subu $v0, $v1 # Subtract Unsigned

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

14 sur 31 04/03/2018 à 18:56

12
13
14
15
16
17
18
19

[...]
.text:00401424 lw $v0, 0x318+var_2F0($fp) # Load Word
.text:00401428 nor $v0, $zero, $v0 # NOR
.text:0040142C addiu $v0, 0x20 # Add Immediate Unsigned
.text:00401430 lw $a0, 0x318+tmp_pc($fp) # Load Word
.text:00401434 sllv $v0, $a0, $v0 # Shift Left Logical Variable
.text:00401438 or $v0, $v1, $v0 # OR
.text:0040143C sw $v0, 0x318+tmp_pc($fp) # Store Word'''

Then we have to prepare the environment of our engine: the two symbolic variables are stack-
variables, so we have to insert them in the context of our virtual environment. The resulting formula
is going to be in $v0 at the end of the execution ; this the holy grail, the formula we are after.

solve_nsc2014_step1_z3.py@extract_equation_of_function_that_generates_magic_value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

def extract_equation_of_function_that_generates_magic_value():
'''Here we do some magic to transform our mini MIPS emulator

 into a symbolic execution engine ; the purpose is to extract
 the formula of the function generating the 32-bits magic value'''

x = mini_mips_symexec_engine.MiniMipsSymExecEngine('function_that_generates_magic_value.log
x.debug = False
x.enable_z3 = True
pc_son = BitVec('pc_son', 32)
n_break = BitVec('n_break', 32)
x.stack['pc_son'] = pc_son
x.stack['var_300'] = n_break
emu_generate_magic_from_son_pc(x, print_final_state = False)
compute_magic_equation = x.gpr['v0']
with open(os.path.join('formulas', 'generate_magic_value_from_pc_son.smt2'),
f.write(to_SMT2(compute_magic_equation, name = 'generate_magic_from_pc_son'

return pc_son, n_break, simplify(compute_magic_equation)

You can now keep in memory the formula & wrap this function in another one so that you can reuse
it every time you need it:

solve_nsc2014_step1_z3.py@generate_magic_from_son_pc_using_z3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

var_magic, var_n_break, expr_magic = [None]*3
def generate_magic_from_son_pc_using_z3(pc_son, n_break):

'''Generates the 32 bits magic value thanks to the output
 of the symbolic execution engine: run the analysis once, extract
 the complete equation & reuse it as much as you want'''

global var_magic, var_n_break, expr_magic
if var_magic is None and var_n_break is None and expr_magic is None:
var_magic, var_n_break, expr_magic = extract_equation_of_function_that_generates_magic_va

return substitute(
expr_magic,
(var_magic, BitVecVal(pc_son, 32)),
(var_n_break, BitVecVal(n_break, 32))

).as_long()

The power of using symbolic variables here lies in the fact that we don’t need to run the emulator
every single time you need to call this function ; you get once the generic formula and you just have
to substitute the symbolic variables by the concrete values you want. This comes for free with our
code, so let’s use it heh :–).

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

15 sur 31 04/03/2018 à 18:56

resulting formula in SMT2 format

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

; generate_magic_from_pc_son
(declare-fun n_break () (_ BitVec 32))
(declare-fun pc_son () (_ BitVec 32))
(let ((?x14 (bvadd n_break (bvmul (_ bv4294967295 32) ((_ extract 63 32) (bvmul (_ bv11481595
(let ((?x21 ((_ extract 63 32) (bvmul (_ bv1148159575 64) (concat (_ bv0 32) n_break)))))
(let ((?x8 (bvadd ?x21 (concat (_ bv0 1) ((_ extract 31 1) ?x14)))))
(let ((?x26 ((_ extract 31 6) ?x8)))
(let ((?x24 (bvadd (_ bv32 32) (concat (_ bv63 6) (bvnot ?x26)))))
(let ((?x27 (concat (_ bv0 6) ?x26)))
(let ((?x42 (bvmul (_ bv4294967295 32) ?x27)))
(let ((?x67 ((_ extract 6 6) ?x8)))
(let ((?x120 ((_ extract 7 6) ?x8)))
(let ((?x38 (concat (bvadd (_ bv30088 15) ((_ extract 14 0) pc_son)) ((_ extract 31 15) (bvad
(let ((?x41 (bvxor (bvadd (bvor (bvlshr ?x38 (bvadd (_ bv1 32) ?x27)) (bvshl ?x38 ?x24)) ?x42
(let ((?x63 (bvor ((_ extract 0 0) (bvlshr ?x38 (bvadd (_ bv1 32) ?x27))) ((_ extract 0 0) (b
(let ((?x56 (concat (bvadd (_ bv1 1) (bvxor (bvadd ?x63 ?x67) ?x67)) ((_ extract 31 1) (bvadd
(let ((?x66 (concat (bvadd ((_ extract 9 1) (bvadd (_ bv2142377237 32) ?x41)) ((_ extract 14
(let ((?x118 (bvor ((_ extract 1 0) (bvshl ?x66 (bvadd (_ bv1 32) ?x27))) ((_ extract 1 0) (b
(let ((?x122 (bvnot (bvadd ?x118 ?x120))))
(let ((?x45 (bvadd (bvor (bvshl ?x66 (bvadd (_ bv1 32) ?x27)) (bvlshr ?x66 ?x24)) ?x27)))
(let ((?x76 ((_ extract 4 2) ?x45)))
(let ((?x110 (bvnot ((_ extract 5 5) ?x45))))
(let ((?x55 ((_ extract 8 6) ?x45)))
(let ((?x108 (bvnot ((_ extract 10 9) ?x45))))
(let ((?x78 ((_ extract 13 11) ?x45)))
(let ((?x106 (bvnot ((_ extract 14 14) ?x45))))
(let ((?x80 ((_ extract 15 15) ?x45)))
(let ((?x104 (bvnot ((_ extract 16 16) ?x45))))
(let ((?x123 (concat (bvnot ((_ extract 31 29) ?x45)) ((_ extract 28 28) ?x45) (bvnot ((_ ext
(let ((?x50 (concat (bvnot ((_ extract 30 29) ?x45)) ((_ extract 28 28) ?x45) (bvnot ((_ extr
(let ((?x91 (bvadd (_ bv1720220585 32) (concat (bvnot (bvadd (_ bv612234822 31) ?x50)) (bvnot
(let ((?x137 (bvnot (bvadd (_ bv128582 17) (concat ?x104 ?x80 ?x106 ?x78 ?x108 ?x55 ?x110 ?x7
(let ((?x146 (bvadd (_ bv31657 18) (concat ?x137 (bvnot ((_ extract 31 31) (bvadd (_ bv612234
(let ((?x131 (bvadd (_ bv2800103692 32) (concat ?x146 ((_ extract 31 18) ?x91)))))
(let ((?x140 (concat ((_ extract 18 18) ?x91) ((_ extract 31 31) ?x131) (bvnot ((_ extract 30
(let ((?x176 (bvnot (bvadd (concat ((_ extract 4 4) ?x131) (bvnot ((_ extract 3 1) ?x131))) (
(let ((?x177 (bvadd (concat ?x176 (bvnot ((_ extract 31 4) (bvadd ?x140 ?x27)))) ?x42)))
(let ((?x187 (bvadd (bvnot ((_ extract 13 4) (bvadd ?x140 ?x27))) (bvmul (_ bv1023 10) ((_ ex
(let ((?x180 (concat (bvadd ((_ extract 23 10) ?x177) (bvmul (_ bv16383 14) ((_ extract 19 6)
(let ((?x79 (bvadd (bvxor (bvadd ?x180 ?x27) ?x27) ?x42)))
(let ((?x211 (concat (bvadd ((_ extract 17 10) ?x177) (bvmul (_ bv255 8) ((_ extract 13 6) ?x
(let ((?x190 (concat (bvnot (bvadd (bvxor (bvadd ?x211 ?x26) ?x26) (bvmul (_ bv67108863 26) ?
(let ((?x173 (bvadd (bvnot (bvadd (_ bv3113082326 32) ?x190 ?x27)) ?x27)))
(let ((?x174 ((_ extract 9 6) ?x8)))
(let ((?x255 ((_ extract 2 2) (bvadd (bvnot (bvadd (_ bv6 4) (bvnot ((_ extract 29 26) ?x79))
(let ((?x253 ((_ extract 3 3) (bvadd (bvnot (bvadd (_ bv6 4) (bvnot ((_ extract 29 26) ?x79))
(let ((?x144 ((_ extract 23 6) ?x8)))
(let ((?x233 ((_ extract 17 6) ?x8)))
(let ((?x235 (bvxor (bvadd ((_ extract 25 14) (bvadd (concat ?x187 ((_ extract 31 10) ?x177))
(let ((?x244 (bvadd (_ bv122326 18) (concat (bvnot (bvadd ?x235 (bvmul (_ bv4095 12) ?x233)))
(let ((?x246 (bvadd (bvnot ?x244) ?x144)))
(let ((?x293 (concat (bvnot ((_ extract 24 23) ?x173)) ((_ extract 22 18) ?x173) ((_ extract
(let ((?x324 (bvor ((_ extract 0 0) (bvshl ?x293 (bvadd (_ bv1 32) ?x27))) ((_ extract 0 0) (
(let ((?x202 (bvadd (bvor (bvshl ?x293 (bvadd (_ bv1 32) ?x27)) (bvlshr ?x293 ?x24)) ?x27)))
(let ((?x261 (concat ((_ extract 31 31) ?x202) (bvnot ((_ extract 30 29) ?x202)) ((_ extract
(let ((?x250 (concat ((_ extract 11 7) ?x202) (bvnot ((_ extract 6 5) ?x202)) ((_ extract 4 2
(let ((?x331 (bvadd (_ bv1397077939 32) (concat (bvadd (_ bv4018 12) ?x250) ((_ extract 31 12
(let ((?x264 (bvor (bvshl (bvadd (bvnot ?x331) ?x27) (bvadd (_ bv1 32) ?x27)) (bvlshr (bvadd
(let ((?x298 (bvor (bvshl (bvadd (_ bv1031407080 32) ?x264 ?x42) (bvadd (_ bv1 32) ?x27)) (bv
(let ((?x231 (bvor ((_ extract 31 17) (bvshl ?x298 (bvadd (_ bv1 32) ?x27))) ((_ extract 31 1
(let ((?x220 (bvor ((_ extract 16 0) (bvshl ?x298 (bvadd (_ bv1 32) ?x27))) ((_ extract 16 0)
(let ((?x283 (bvor (bvshl (concat ?x220 ?x231) (bvadd (_ bv1 32) ?x27)) (bvlshr (concat ?x220
(let ((?x119 (bvadd (_ bv4200859627 32) (bvnot (bvor (bvshl ?x283 (bvadd (_ bv1 32) ?x27)) (b
(let ((?x201 (bvshl ?x119 ?x24)))
(let ((?x405 (bvadd (bvor ((_ extract 10 8) (bvlshr ?x119 (bvadd (_ bv1 32) ?x27))) ((_ extra

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

16 sur 31 04/03/2018 à 18:56

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

(let ((?x343 (concat (bvor ((_ extract 7 0) (bvlshr ?x119 (bvadd (_ bv1 32) ?x27))) ((_ extra
(let ((?x199 (bvadd (_ bv752876532 32) (bvnot (bvadd ?x343 ?x27)) ?x27)))
(let ((?x409 (concat ((_ extract 31 29) ?x199) (bvnot ((_ extract 28 28) ?x199)) ((_ extract
(let ((?x342 (bvlshr (bvadd (_ bv330202175 32) ?x409) ?x24)))
(let ((?x20 (bvadd (_ bv1 32) ?x27)))
(let ((?x337 (bvshl (bvadd (_ bv330202175 32) ?x409) ?x20)))
(let ((?x354 (bvadd (_ bv651919116 32) (bvor ?x337 ?x342))))
(let ((?x414 (concat (bvnot ((_ extract 26 26) ?x354)) ((_ extract 25 25) ?x354) (bvnot ((_ e
(let ((?x464 (concat ((_ extract 22 22) ?x354) (bvnot ((_ extract 21 21) ?x354)) (bvnot ((_ e
(let ((?x474 (concat (bvadd (_ bv141595581 28) (bvnot (bvxor (bvadd (_ bv178553293 28) ?x464)
(let ((?x495 (bvadd (_ bv1994801052 32) (bvxor (_ bv1407993787 32) (bvor (bvshl ?x474 ?x20) (
(let ((?x392 (concat (bvor ((_ extract 13 0) (bvlshr ?x495 ?x20)) ((_ extract 13 0) (bvshl ?x
(let ((?x388 (bvlshr ?x392 ?x24)))
(let ((?x494 (concat (bvnot (bvor ((_ extract 31 31) (bvshl ?x392 ?x20)) ((_ extract 31 31) ?
(let ((?x450 (bvor (bvlshr ?x494 ?x20) (bvshl ?x494 ?x24))))
(bvor (bvlshr ?x450 ?x20) (bvshl ?x450 ?x24))

Quite happy we don’t have to study that right?

Extracting the function that generates the new program counter from the second
magic value

For the second big block of code, we can do exactly the same thing: copy the code, configure the
virtual environment with our symbolic variables and wrap the function:

solve_nsc2014_step1_z3.py@generate_new_pc_from_magic_high/extract_equation_of_function_that_generates_new_so

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

def extract_equation_of_function_that_generates_new_son_pc():
'''Extract the formula of the function generating the new son's $pc'''
x = mini_mips_symexec_engine.MiniMipsSymExecEngine('function_that_generates_new_son_pc.log'
x.debug = False
x.enable_z3 = True
tmp_pc = BitVec('magic', 32)
n_loop = BitVec('n_loop', 32)
x.stack['tmp_pc'] = tmp_pc
x.stack['var_2F0'] = n_loop
emu_generate_new_pc_for_son(x, print_final_state = False)
compute_pc_equation = simplify(x.gpr['v0'])
with open(os.path.join('formulas', 'generate_new_pc_son.smt2'), 'w') as f:
f.write(to_SMT2(compute_pc_equation, name = 'generate_new_pc_son'))

return tmp_pc, n_loop, compute_pc_equation

var_new_pc, var_n_loop, expr_new_pc = [None]*3
def generate_new_pc_from_magic_high(magic_high, n_loop):

global var_new_pc, var_n_loop, expr_new_pc
if var_new_pc is None and var_n_loop is None and expr_new_pc is None:
var_new_pc, var_n_loop, expr_new_pc = extract_equation_of_function_that_generates_new_son

return substitute(
expr_new_pc,
(var_new_pc, BitVecVal(magic_high, 32)),
(var_n_loop, BitVecVal(n_loop, 32))

).as_long()

If you are interested in what the formula looks like, it is also available in the NoSuchCon2014 folder
on my github.

Putting it all together: building a function that computes the new program
counter of the son

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

17 sur 31 04/03/2018 à 18:56

Obviously, we don’t really care about those two previous functions, we just want to combine them
together to implement the computation of the new program counter from both the round number &
where the son SIGTRAP’d. The only missing bits is the lookup in the QWORDs array to extract the
second magic value. We just have to dump the array inside another file called memory.py. This is
done with a simple IDA Python one-liner:

Dump the QWORD array with IDAPy

1 values = dict((0x00414130+i*8, Qword(0x00414130+i*8)) for i in range(0x25E))

Now, we can build the whole function easily by combining all those pieces:

solve_nsc2014_step1_z3.py@generate_new_pc_from_pc_son_using_z3

1
2
3
4
5
6
7
8
9
10
11
12
13

def generate_new_pc_from_pc_son_using_z3(pc_son, n_break):
'''Generate the new program counter from the address where the son SIGTRAP'd and

 the number of SIGTRAP the son encountered'''
loop_n = (n_break / 101)
magic = generate_magic_from_son_pc_using_z3(pc_son, n_break)
idx = None
for i in range(len(memory.pcs)):
if (memory.pcs[i] & 0xffffffff) == magic:

idx = i
break

assert(idx != None)
return generate_new_pc_from_magic_high(memory.pcs[idx] >> 32, loop_n)

Sweet. Really sweet.

This basically means we are now able to unscramble the code of the son and reordering it completely
without even physically running the binary nor generating traces.

Unscramble the code like a sir
Before showing, the code I just want to explain the process one more time:

The son executes some code until it reaches a break instruction1.
The father gets the $pc of the son and the variable that counts the number of break instruction
the son executed

2.

The father generates a new $pc value from those two variables3.
The father sets the new $pc4.
The father continues its son5.
Goto 1!6.

So basically to unscramble the code, we just need to simulate what the father would do & log
everything somewhere. Couple of important details though:

There are exactly 101 break instructions in the son, so 101 chunks of code will be executed
and need to be reordered,
The son is executing 6 rounds ; that’s exactly why the QWORD array has 6*101 entries.

Here is the function I used:

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

18 sur 31 04/03/2018 à 18:56

solve_nsc2014_step1_z3.py@generate_son_code_reordered

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

def generate_son_code_reordered(debug = False):
'''This functions puts in the right order the son's block of codes without

 relying on the father to set a new $pc value when a break is executed in the son.
 With this output we are good to go to create a nanomites-less binary:
 - We don't need the father anymore (he was driving the son)
 - We have the code in the right order, so we can also remove the break instructions
 It will also be quite useful when we want to execute symbolic-ly its code.
 '''

def parse_line(l):
addr_seg, instr, _ = l.split(None, 2)
_, addr = addr_seg.split(':')
return int('0x%s' % addr, 0), instr

son_code = code.block_code_of_son
next_break = 0
n_break = 0
cleaned_code = []
for _ in range(6):

for z in range(101):
i = 0
while i < len(son_code):

line = son_code[i]
addr, instr = parse_line(line)
if instr == 'break' and (next_break == addr or z == 0):

break_addr = addr
new_pc = generate_new_pc_from_pc_son_using_z3(break_addr,
n_break += 1
if debug:

print '; Found the %dth break (@%.8x) ; new pc will be
state = 'Begin'
block = []
j = 0
while j < len(son_code):

line = son_code[j]
addr, instr = parse_line(line)
if state == 'Begin':

if addr == new_pc:
block.append(line)
state = 'Log'

elif state == 'Log':
if instr == 'break':

next_break = addr
state = 'End'

else:
block.append(line)

elif state == 'End':
break

else:
pass

j += 1

if debug:
print ';', '='*25, 'BLOCK %d' % z, '='*25
print '\n'.join(block)

cleaned_code.extend(block)
break

i += 1

return cleaned_code

And there it is :–)

The function outputs the unrolled and ordered code of the son. If you want to push further, you could

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

19 sur 31 04/03/2018 à 18:56

theoretically perform an open-heart surgery to completely remove the nanomites from the original
binary, isn’t it cool? This is left as an exercise for the interested reader though :–)).

Attacking the son: the last man standing
Now that we have the code unscrambled, we can directly feed it to our engine but before doing so
here are some details:

As we said earlier, it looks like the son is executing 6 times the same code. This is not the case
at all, every round will execute the same amount of instructions but not in the same order
The computations executed can be seen as some kind of light encoding/encryption or
decoding/decryption algorithm
We have 6 rounds because the input serial is broken into 6 DWORDs (so 6 symbolic variables)
; so basically each round is going to generate an output DWORD

As previously, we need to copy the code we want to execute. Note that we can also use
generate_son_code_reorganized to generate it dynamically. Next step is to configure the virtual
environment and we are good to finally run the code:

solve_nsc2014_step1_z3@get_serial first part

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

def get_serial():
print '> Instantiating the symbolic execution engine..'
x = mini_mips_symexec_engine.MiniMipsSymExecEngine('decrypt_serial.log')
x.enable_z3 = True

print '> Generating dynamically the code of the son & reorganizing/cleaning it..'
If you don't want to generate it dynamically like a sir, I've copied a version inside
code.block_code_of_son_reorganized_loop_unrolled :-)
x.code = generate_son_code_reorganized()

print '> Configuring the virtual environement..'
x.gpr['fp'] = 0x7fff6cb0
x.stack_offsets['var_30'] = 24
start_addr = x.gpr['fp'] + x.stack_offsets['var_30'] + 8
(gdb) x/6dwx $s8+24+8
0x7fff6cd0: 0x11111111 0x11111111 0x11111111
0x11111111 0x11111111 0x11111111
a, b, c, d, e, f = BitVecs('a b c d e f', 32)
x.mem[start_addr + 0] = a
x.mem[start_addr + 4] = b
x.mem[start_addr + 8] = c
x.mem[start_addr + 12] = d
x.mem[start_addr + 16] = e
x.mem[start_addr + 20] = f

print '> Running the code..'
x.run()

The thing that matters this time is to find a, b, c, d, e, f so that they generate specific outputs ; so this
is where Z3 is going to help us a lot. Thanks to that guy we don’t need to manually invert the
algorithm.

The final bit now is basically just about setting up the solver, setting the correct constraints and
generating the serial you guys have been waiting for so long:

solve_nsc2014_step1_z3@get_serial second part

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

20 sur 31 04/03/2018 à 18:56

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

print '> Instantiating & configuring the solver..'
s = Solver()
s.add(
x.mem[start_addr + 0] == 0x7953205b, x.mem[start_addr + 4] == 0x6b63616e
x.mem[start_addr + 8] == 0x20766974, x.mem[start_addr + 12] == 0x534e202b
x.mem[start_addr + 16] == 0x203d2043, x.mem[start_addr + 20] == 0x5d20333c

)

print '> Solving..'
if s.check() == sat:
print '> Constraints solvable, here are the 6 DWORDs:'
m = s.model()
for i in (a, b, c, d, e, f):

print ' %r = 0x%.8X' % (i, m[i].as_long())

print '> Serial:', ''.join(('%.8x' % m[i].as_long())[::-1] for i in (a, b
else:
print '! Constraints unsolvable'

There we are, the final moment; drum roll

python solve_nsc2014_step1_z3.py + YAY

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

PS D:\Codes\NoSuchCon2014> python .\solve_nsc2014_step1_z3.py
==
Tests OK -- you are fine to go
==
> Instantiating the symbolic execution engine..
> Generating dynamically the code of the son & reorganizing/cleaning it..
> Configuring the virtual environement..
> Running the code..
> Instantiating & configuring the solver..
> Solving..
> Constraints solvable, here are the 6 DWORDs:
 a = 0xFE446223
 b = 0xBA770149
 c = 0x75BA5111
 d = 0x78EA3635
 e = 0xA9D6E85F
 f = 0xCC26C5EF
> Serial: 322644EF941077AB1115AB575363AE87F58E6D9AFE5C62CC
==

overclok@wildout:~/chall/nsc2014$./start_vm.sh
[0.000000] Initializing cgroup subsys cpuset
[...]
Debian GNU/Linux 7 debian-mipsel ttyS0

debian-mipsel login: root
Password:
[...]
root@debian-mipsel:~# /home/user/crackmips 322644EF941077AB1115AB575363AE87F58E6D9AFE5C62CC
good job!
Next level is there: http://nsc2014.synacktiv.com:65480/oob4giekee4zaeW9/

Boom :–).

Alternative solution
In this part, I present an alternate solution to solve the challenge. It’s somehow a shortcut, since it
requires much less coding than Axel’s one, and uses the awesome Miasm framework.

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

21 sur 31 04/03/2018 à 18:56

Shortcut #1 : Tracing the parent with GDB

Quick recap of the parent’s behaviour

As Axel has previously explained, the first step is to recover the child’s execution flow. Because of
nanomites, the child is driven by the parent; we have to analyze the parent (i.e. the debug function)
first to determine the correct sequence of the child’s pc values.

The parent’s main loop is obfuscated, but by browsing cross-references of stack variables in IDA, we
can see where each one is used. After a bit of analysis, we can try to decompile by hand the
algorithm, and write a pseudo-Python code description of what the debug function does (it is really
simplified):

debug_pseudo_code.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

counter = 0
waitpid()

while(True):
regs = ptrace(GETREGS)

big block 1
addr = regs.pc
param = f(counter)
addr = obfu1(addr, param)

for i in range(605):
entry = pcs[i] # entry is 8 bytes long (2 dwords)
if(addr == entry.first_dword):

addr = entry.second_dword
break

big block 2
addr = obfu2(addr, param)

regs.pc = addr
ptrace(SETREGS, regs)
counter += 1

if(not waitpid()):
break

The “big blocks” are the two long assembly blocks preceding and following the inner loop. Without
looking at the gory details, we understand that a param value is derived from the counter using a
function that I call f, and then used to obfuscate the original child’s pc. The result is then searched in
a pcs array (stored at address 0414130), the next dword is extracted and used in a 2nd obfuscation
pass to finally produce the new pc value injected into the child.

The most important fact here is that that this process does not involve the input key at anytime. The
output pc sequence is deterministic and constant; two executions with two different keys will
produce the same sequence of pc’s. Since we know the first value of pc (the first break instruction at
040228C), we can theoretically compute the correct sequence and then reorder the child’s
instructions according to this sequence.

We have two approaches for doing so:

statical analysis: somehow understand each instruction used in obfuscation passes and rewrite

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

22 sur 31 04/03/2018 à 18:56

the algorithm producing the correct sequence. This is the path followed by Axel.
dynamic analysis: trace the program once and log all pc values.

Although the first one is probably the most interesting, the second is certainly the fastest. Again, it
only works because the input key does not influence the output pc sequence. And we’re lucky: the
child is already debugged by the parent, but nothing prevents us to debug the parent itself.

First attempt at tracing

Tracing is pretty straightforward with GDB using bp and commands. In order to understand the
parent’s algorithm a bit better, I first wrote a pretty verbose GDB script that prints the loop counter,
param variable as well as the original and new child’s pc for each iteration. I chose to put two
breakpoints:

The first one at the end of the first obfuscation blocks (0x401440)
The second one before the ptrace call at the end of the second block (0x0401D8C), in order to
be able to read the child’s pc manipulated by the parent.

Here is the script:

gdb_trace1_script.txt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

##################################
A few handy functions
##################################

def print_context_pc
 printf "regs.pc = 0x%08x\n", *(int*)($fp-0x1cc)
end

def print_param
 printf "param = 0x%08x\n", *(int*)($fp-0x2f0)
end

def print_addr
 printf "addr = 0x%08x\n", *(int*)($fp-0x2fc)
end

def print_counter
 printf "counter = %d\n", *(int*)($fp-0x300)
end

##################################

set pagination off
set confirm off
file crackmips
target remote 127.0.0.1:4444 # gdbserver address

break at the end of block 1
b *0x401440
commands
silent
printf "\nNew round\n"
print_counter
print_context_pc
print_param
print_addr
c
end

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

23 sur 31 04/03/2018 à 18:56

40
41
42
43
44
45
46
47
48

break before the end of block 2
b *0x0401D8C
commands
silent
print_context_pc
c
end

c

To run that script within GDB, we first need to start crackmips with gdbserver in our qemu VM.
After a few minutes, we get the following (cleaned) trace:

gdb_trace1.txt

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

New round
counter = 0
regs.pc = 0x0040228c
param = 0x00000000
addr = 0xcd0e9f0e
regs.pc = 0x00402290

New round
counter = 1
regs.pc = 0x004022bc
param = 0x00000000
addr = 0xcd0e99ae
regs.pc = 0x00402ce0

New round
counter = 2
regs.pc = 0x00402d0c
param = 0x00000000
addr = 0xcd0e420e
regs.pc = 0x00402da8

[...]

By reading the trace further, we realize that param is always equal to counter/101. This is actually
the child’s own loop counter, since its big loop is made of 101 pseudo basic blocks. We also notice
that the pc sequence is different for each child’s loop: round 0 is not equal to round 101, etc.

Getting a clean trace

Since we’re only interested in the final pc value for each round, we can make a simpler script that
just outputs those values. And organize them in a parsable format to be able to use them later in
another script. Here is the version 2 of the script:

gdb_trace2_script.txt

1
2
3
4
5
6
7
8
9
10

def print_context_pc
 printf "0x%08x\n", *(int*)($fp-0x1cc)
end

set pagination off
set confirm off
file crackmips
target remote 127.0.0.1:4444

break before the end of block 2

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

24 sur 31 04/03/2018 à 18:56

11
12
13
14
15
16
17
18

b *0x0401D8C
commands
silent
print_context_pc
c
end

c

The cleaned trace only contains the 606 pc values, one on each line:

gdb_trace.txt

1
2
3
4
5
6
7

0x00402290
0x00402ce0
0x00402da8
0x00403550
[...]
0x004030e4
0x004039dc

Mission 1: accomplished!

Shortcut #2 : Symbolic execution using Miasm
We now have the list of each start address of each basic block executed by the child. The next step is
to understand what each one of them does, and reorder them to reproduce the whole algorithm.

Even though writing a symbolic execution engine from scratch is certainly a fun and interesting
exercise, I chose to play with Miasm. This excellent framework can disassemble binaries in various
architectures (among which x86, x64, ARM, MIPS, etc.), and convert them into an intermediate
language called IR (intermediate representation). It is then able to perform symbolic execution on
this IR in order to find what are the side effects of a basic block on registers and memory locations.
Although there is not so much documentation, Miasm contains various examples that should make
the API easier to dig in. Don’t tell me that it is hard to install, it is really not (well, I haven’t tried on
Windows ;). And there is even a docker image, so you have no excuse to not try it!

Miasm symbolic execution 101

Before scripting everything, let’s first see how to use Miasm to perform symbolic execution of one
basic block. For the sake of simplicity, let’s work on the first basic block of the child’s main loop.

miasm_example.py (1/5)

1
2
3
4
5
6

from miasm2.analysis.machine import Machine
from miasm2.analysis import binary

bi = binary.Container("crackmips")
machine = Machine('mips32l')
mn, dis_engine_cls, ira_cls = machine.mn, machine.dis_engine, machine.ira

First, we open the crackme using the generic Container class. It automatically detects the executable
format and uses Elfesteem to parse it. Then we use the handy Machine class to get references to
useful classes we’ll use to disassemble and analyze the binary.

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

25 sur 31 04/03/2018 à 18:56

miasm_example.py (2/5)

1
2
3
4
5
6
7
8

BB_BEGIN = 0x00402290
BB_END = 0x004022BC

Disassemble between BB_BEGIN and BB_END
dis_engine = dis_engine_cls(bs=bi.bs)
dis_engine.dont_dis = [BB_END]
bloc = dis_engine.dis_bloc(BB_BEGIN)
print '\n'.join(map(str, bloc.lines))

Here, we disassemble a single basic block, by explicitly telling Miasm its start and end address. The
disassembler is created by instantiating the dis_engine_cls class. bi.bs represents the binary
stream we are working on. I admit the dont_dis syntax is a bit weird; it is used to tell Miasm to stop
disassembling when it reaches a given address. We do it here because the next instruction is a break,
and Miasm does not normally think it is the end of a basic block. When you run those lines, you
should get this output:

miasm_example.py output

1
2
3
4
5
6
7
8
9
10
11

LW V1, 0x38(FP)
SLL V0, V1, 0x2
ADDIU A0, FP, 0x18
ADDU V0, A0, V0
LW A0, 0x8(V0)
LW V0, 0x38(FP)
SUBU A0, A0, V0
SLL V0, V1, 0x2
ADDIU V1, FP, 0x18
ADDU V0, V1, V0
SW A0, 0x8(V0)

Okay, so we know how to disassemble a block with Miasm. Let’s now see how to convert it into the
Intermediate Representation:

miasm_example.py (3/5)

1
2
3
4

Transform to IR
ira = ira_cls()
irabloc = ira.add_bloc(bloc)[0]
print '\n'.join(map(lambda b: str(b[0]), irabloc.irs))

We instantiated the ira_cls class and called its add_bloc method. It takes a basic block as input and
outputs a list of IR basic blocs; here we know that we’ll get only one, so we use [0]. Let’s see what
is the output of those lines:

miasm_sample.py output

1
2
3
4
5
6
7
8
9
10

V1 = @32[(FP+0x38)]
V0 = (V1 << 0x2)
A0 = (FP+0x18)
V0 = (A0+V0)
A0 = @32[(V0+0x8)]
V0 = @32[(FP+0x38)]
A0 = (A0+(- V0))
V0 = (V1 << 0x2)
V1 = (FP+0x18)
V0 = (V1+V0)

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

26 sur 31 04/03/2018 à 18:56

11
12

@32[(V0+0x8)] = A0
IRDst = loc_00000000004022BC:0x004022bc

Each one of those lines are instructions in Miasm’s IR language. It is pretty easy: each instruction is
described as a list of side-effects it has on some variables, using expressions and affectations.
@32[...] represents a 32-bit memory access; when it’s on the left of an = sign, it’s a write access,
when it’s on the right it’s a read. The last line uses the pseudo-register IRDst, which is kind of the
IR’s pc register. It tells Miasm where is located the next basic block.

Great! Let’s see now how to perform symbolic execution on this IR basic block.

miasm_example.py (4/5)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

from miasm2.expression.expression import *
from miasm2.ir.symbexec import symbexec
from miasm2.expression.simplifications import expr_simp

Prepare symbolic execution
symbols_init = {}
for i, r in enumerate(mn.regs.all_regs_ids):

symbols_init[r] = mn.regs.all_regs_ids_init[i]

Perform symbolic exec
sb = symbexec(ira, symbols_init)
sb.emulbloc(irabloc)

mem, exprs = sb.symbols.symbols_mem.items()[0]
print "Memory changed at %s :" % mem
print "\tbefore:", exprs[0]
print "\tafter:", exprs[1]

The first lines are initializing the symbol pool used for symbolic execution. We then use the
symbexec module to create an execution engine, and we give it our fresh IR basic block. The result
of the execution is readable by browsing the attributes of sb.symbols. Here I am mainly interested
on the memory side-effects, so I use symbols_mem.items() to list them. symbols_mem is actually a
dict whose keys are the memory locations that changed during execution, and values are pairs
containing both the previous value that was in that memory cell, and the new one. There’s only one
change, and here it is:

miasm_example.py output

1
2
3

Memory changed at (FP_init+(@32[(FP_init+0x38)] << 0x2)+0x20) :
 before: @32[(FP_init+(@32[(FP_init+0x38)] << 0x2)+0x20)]
 after: (@32[(FP_init+(@32[(FP_init+0x38)] << 0x2)+0x20)]+(- @32[(FP_init+0x38)]))

The expressions are getting a bit more complex, but still pretty readable. FP_init represents the
value of the fp register at the beginning of execution. We can clearly see that a memory location as
modified since a value was subtracted from it. But we can do better: we can give Miasm
simplification rules in order to make this output much more readable. Let’s do it!

miasm_example.py (5/5)

1
2
3
4

Simplifications
fp_init = ExprId('FP_init', 32)
zero_init = ExprId('ZERO_init', 32)
e_i_pattern = expr_simp(ExprMem(fp_init + ExprInt32(0x38), 32))

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

27 sur 31 04/03/2018 à 18:56

5
6
7
8
9
10
11
12
13
14
15
16
17

e_i = ExprId('i', 32)
e_pass_i_pattern = expr_simp(ExprMem(fp_init + (e_i << ExprInt32(2)) + ExprInt32
e_pass_i = ExprId("pwd[i]", 32)

simplifications = {e_i_pattern : e_i,
e_pass_i_pattern : e_pass_i,
zero_init : ExprInt32(0) }

def my_simplify(expr):
expr2 = expr.replace_expr(simplifications)
return expr2

print "%s = %s" % (my_simplify(exprs[0]) ,my_simplify(exprs[1]))

Here we declare 3 replacement rules:

Replace @32[(FP_init+0x38)] with i
Replace @32[(FP_init+(i << 0x2)+0x20)] with pwd[i]
Replace ZERO_init with 0 (although it is not really useful here)

There is actually a more generic way to do it using pattern matching rules with jokers, but we don’t
really need this machinery here. This the result we get after simplification:

miasm_example.py final output

1 pwd[i] = (pwd[i]+(- i))

That’s all! So all this basic block does is a subtraction. What is nice is that the output is actually valid
Python code :). This will be very useful in the last part.

Generating the child’s algorithm

So in less than 60 lines, we were able to disassemble an arbitrary basic block, perform symbolic
execution on it and get a pretty understandable result. We just need to apply this logic to the 100
remaining blocks, and we’ll have a pythonic version of each one of them. Then, we simply reorder
them using the GDB trace we got from the previous part, and we’ll be able to generate 606 python
lines describing the whole algorithm.

Here is an extract of the script automating all of this:

miasm_symbexec.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

def load_trace(filename):
return [int(x.strip(), 16) for x in open(filename).readlines()]

def boundaries_from_trace(trace):
bb_starts = sorted(set(trace))
boundaries = [(bb_starts[i], bb_starts[i+1]-4) for i in range(len(bb_starts
boundaries.append((0x4039DC, 0x04039E8)) # last basic bloc, added by hand
return boundaries

def exprs2str(exprs):
return ' = '.join(str(e) for e in exprs)

trace = load_trace("gdb_trace.txt")
boundaries = boundaries_from_trace(trace)

print "# Building IR blocs & expressions for all basic blocks"

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

28 sur 31 04/03/2018 à 18:56

17
18
19
20
21
22
23
24
25
26

bb_exprs = []
for zone in boundaries:

bb_exprs.append(analyse_bb(*zone))

print "# Reconstructing the whole algorithm based on GDB trace"
bb_starts = [x[0] for x in boundaries]
for bb_ea in trace:

bb_index = bb_starts.index(bb_ea)
#print "%x : %s" % (bb_ea, exprs2str(bb_exprs[bb_index]))
print exprs2str(bb_exprs[bb_index])

The analyse_bb() function perform symbolic execution on a single basic block, given its start and
end addresses. This is just wrapping what we’ve been doing so far into a function. The GDB trace is
opened, parsed, and a list of basic block addresses is built from it (we cheat a little bit for the last one
of the loop, by hardcoding it). Each basic block is analyzed and the resulting expressions are pushed
into the bb_exprs list. Then the GDB trace is processed, by outputting the expressions corresponding
to each basic block.

This is what we get:

output_algo.py

1
2
3
4
5
6
7
8
9
10
11
12

Building IR blocs & expressions for all basic blocks
Reconstructing the whole algorithm based on GDB trace
pwd[i] = (pwd[i]+(- i))
pwd[i] = ((0x0|pwd[i])^0xFFFFFFFF)
pwd[i] = (pwd[i]^i)
pwd[i] = (pwd[i]^i)
pwd[i] = (pwd[i]+0x3ECA6F23)
pwd[i] = (pwd[i]+0x6EDC032)
[...]
pwd[i] = ((pwd[i] << 0x14)|(pwd[i] >> 0xC))
pwd[i] = ((pwd[i] << ((i+0x1)&0x1F))|(pwd[i] >> ((((0x0|i)^0xFFFFFFFF)+0x20)&
i = (i+0x1)

Solving with Z3
Okay, so now we have a Python (and even C ;) file describing the operations performed on the 6
dwords containing the input key. We could try to bruteforce it, but using a constraint solver is much
more elegant and faster. I also chose Z3 because it has nice Python bindings. And since its
expression syntax is mostly compatible with Python, we just need to add a few things to our
generated file!

sample_solver.py

1
2
3
4
5
6
7
8
9
10
11
12
13

from z3 import *
import struct

solution_str = "[Synacktiv + NSC = <3]"
solutions = struct.unpack("<LLLLLL", solution_str)
N = len(solutions)

Hook Z3's `>>` so it works with our algorithm
(logical shift instead of arithmetic one)
BitVecRef.__rshift__ = LShR

pwd = [BitVec("pwd_%d" % i, 32) for i in range(N)]
pwd_orig = [pwd[i] for i in range(N)]

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

29 sur 31 04/03/2018 à 18:56

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

i = 0

paste here all the generated algorithm from previous part
BEGIN ALGO
pwd[i] = (pwd[i]+(- i))
pwd[i] = ((0x0|pwd[i])^0xFFFFFFFF)
[...]
pwd[i] = ((pwd[i] << ((i+0x1)&0x1F))|(pwd[i] >> ((((0x0|i)^0xFFFFFFFF)+0x20)&
i = (i+0x1)
END ALGO

s = Solver()

for i in range(N):
s.add(pwd[i] == solutions[i])

assert s.check() == sat

m = s.model()
sol_dw = [m[pwd_orig[i]].as_long() for i in range(N)]
key = ''.join(("%08x" % dw)[::-1].upper() for dw in sol_dw)

print "KEY = %s" % key

We’ve declared the valid solution, the list of 6 32-bit variables (pwd), pasted the algorithm, and ran
the solver. We just need to be careful with the >> operation, since Z3 treats it as an arithmetic shift,
and we want a logical one. So we replace it with a dirty hook.

The solution should come almost instantly:

1
2
$ python sample_solver.py
KEY = 322644EF941077AB1115AB575363AE87F58E6D9AFE5C62CC

Alternative solution – conclusion
I chose this solution not only to get acquainted with Miasm, but also because it required much less
effort and pain :). It fits into approximately 20 lines of GDB script, and 120 of python using Miasm
and Z3. You can find all of those in this folder. I hope it gave you an understandable example of
symbolic execution and what you can do with it. However I strongly encourage you to dig into
Miasm’s code and examples if you want to really understand what’s going on under the hood.

War’s over, the final words
I guess this is where I thank both @elvanderb for this really cool challenge and @synacktiv for
letting him write it :–). Emilien and I also hope you enjoyed the read, feel free to contact any of us if
you have any remarks/questions/whatever.

Also, special thanks to @__x86 and @jonathansalwan for proofreading!

The codes/traces/tools developed in this post are all available on github here and here!

By the way, don’t hesitate to contact a member of the staff if you have a cool post you would like to
see here — you too can end up in doar-e’s wall of fame :–).

Posted by Axel "0vercl0k" Souchet & Emilien "tr4nce" Girault Oct 11th, 2014 MIPS, NoSuchCon,

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

30 sur 31 04/03/2018 à 18:56

reverse-engineering, symbolic execution, z3, z3py

« Dissection of Quarkslab's 2014 security challenge Spotlight on an unprotected AES128 white-box
implementation »

Recent Posts

Debugger data model, Javascript & x64 exception handling
Binary rewriting with syzygy, Pt. I
happy unikernels
Token capture via an llvm-based analysis pass
Keygenning with KLEE

Copyright © 2018 - Axel Souchet, Jonathan Salwan, Jérémy Fetiveau
Powered by Octopress + mnml.

Taming a wild nanomite-protected MIPS binary with symbolic e... http://doar-e.github.io/blog/2014/10/11/taiming-a-wild-nanomite...

31 sur 31 04/03/2018 à 18:56

