
International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

13

Automatic Detection for JavaScript Obfuscation Attacks in Web

Pages through String Pattern Analysis

YoungHan Choi, TaeGhyoon Kim, SeokJin Choi
The Attached Institute of ETRI
{yhch,tgkim,choisj}@ensec.re.kr

Abstract

Recently, most of malicious web pages include obfuscated codes in order to circumvent the

detection of signature-based detection systems .It is difficult to decide whether the sting is

obfuscated because the shape of obfuscated strings are changed continuously. In this paper,

we propose a novel methodology that can detect obfuscated strings in the malicious web

pages. We extracted three metrics as rules for detecting obfuscated strings by analyzing

patterns of normal and malicious JavaScript codes. They are N-gram, Entropy, and Word

Size. N-gram checks how many each byte code is used in strings. Entropy checks distributed

of used byte codes. Word size checks whether there is used very long string. Based on the

metrics, we implemented a practical tool for our methodology and evaluated it using read

malicious web pages. The experiment results showed that our methodology can detect

obfuscated strings in web pages effectively.

Keywords: JavaScript Obfuscation, Malicious Code Detection

1. Introduction

JavaScript language has power that can execute dynamic work in the web browser.

Therefore, malicious users attack client's system by inserting malicious JavaScript codes in a

normal web page. Using JavaScript, they can steal personal information, download malware

in client systems, and so on. In order to defend the attacks, security systems detect JavaScript

codes in malicious web pages based on signatures. Nowadays, however, attackers circumvent

the defense mechanism using obfuscation. Obfuscation is a method that changes shape of data

in order to avoid pattern-matching detection. For instance, "CLIENT ATTACK" string can be

changed into "CL\x73\x69NT\x20\x65T\x84ACK". Because of obfuscation, many security

systems recently fail to detect malicious JavaScript in web pages.

Again this background, we propose a novel methodology that detects automatically an

obfuscated JavaScript code in a web page. After we analyze various malicious and normal

web pages, we extract three metrics as rules for detecting obfuscation: N-gram, Entropy, and

Word Size. N-gram is an algorithm for text search. We applied 1-gram to our detection

algorithm. 1-gram is equal to byte occurrence frequency. Through entropy, we analyze the

distribution of bytes. Because some obfuscated strings use often excessive long size, we

define word size as third metric. Obfuscated strings are used in parameters of dangerous

functions such as eval and document.write. Before detect obfuscated strings, we extract

firstly all strings related to parameters of the functions. Using static data flow analysis, we

trace data flow for variables in source codes of web pages. We apply three metrics into the

strings and detect obfuscated strings. We implemented a practical tool for our methodology

and experimented for real malicious web pages. The results showed that our methodology

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

14

detected obfuscated strings effectively. In this paper, we focus on JavaScript codes using

obfuscation among various malicious web pages.

Our contribution is like this: After we analyzed malicious web pages including

obfuscated strings, we define three metrics as rules for detecting obfuscated strings. And

then, we implemented a practical tool for our methodology and evaluated it.

Our paper is organized as follows: In section 2, we introduce researches related to

malicious JavaScript codes. Next, we propose our methodology for detecting automatically

obfuscated strings in malicious JavaScript codes in section 3. In section 4, we classify

JavaScript strings into three cases and propose a method that extracts all doubtful strings. In

section 5, we defined three metrics for detecting obfuscated strings and evaluated it using real

malicious web pages. Conclusions and direction for future work are presented in section 6.

2. Related Work

There are rich researches for detecting and analyzing malicious JavaScript codes in web

pages. Because attackers use JavaScript in order to execute malicious work in a client system,

many researches are performed for client defense.

In [1], authors studied various JavaScript redirection in spam pages and found that

obfuscation techniques are prevalent among them. Feinstein analyzed JavaScript obfuscation

cases and implemented obfuscation detection tool[3]. He hooked eval function and the string

concatenation method based on Mozilla SpiderMonkey. This method has difficulty for

modifying an engine of custom web browser. He found that use of the eval function was

relatively more common in the benign scripts than in malicious scripts. In [8], the author

introduced various malicious JavaScript attacks and obfuscation methods. He found that

eval and document.write functions are mostly used in malicious web pages. These

researches focus on malicious JavaScript codes itself. In [2], authors proposed the tool that

can deobfuscate obfuscated strings by emulating a browser. They, however, focused on

deobfuscation, but detection.

Provos et al. decided web pages as malicious pages if the pages caused the automatic

installation of software without the user's knowledge or consent[10]. They found a malicious

web page by monitoring behavior of Internet Explorer in a virtual machine dynamically.

However, our method search obfuscation statically using source codes of web pages. In this

research, they observed that a number of web pages in reputable sites are obfuscated and

found that obfuscated JavaScript is not in itself a good indicator of malice. In [5], Ikinci

implemented system for detecting malicious web pages. He, however, scanned only web

pages using signature-based anti-virus program without considering obfuscation. Hallaraker

et al. proposed a method that monitored JavaScript code execution in order to detect

malicious code behavior and evaluated a mechanism to audit the execution of JavaScript

code[4]. In [12], Wang et al. developed the tool that can detect malicious web pages using

VM based on behavior of system, named HoneyMonkey.

In order to detect cross-site scripting, Vogt et al. tracked the flow of sensitive information

insider the web browser using dynamic data tainting and static analysis[11]. Using static

analysis, they traced every branch in the control flow by focusing on tainted value. In [6],

authors proposed the method that can detect JavaScript worms based on propagation activity

as worm's characters. They, however, didn't consider obfuscation of JavaScript. Wassermann

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

15

et al. presented a static analysis for finding XSS vulnerabilities that address weak or absent

input validation[13]. They traced tainted information flows in web source codes.

3. Our Methodology for Detecting Obfuscation in Malicious Web Pages

In this chapter, we propose a novel methodology for detecting obfuscated strings in

malicious web pages with Javascript codes. After we extract doubtful strings in web pages,

we analyze them for deciding whether they are obfuscated or not. We extract all doubtful

strings in web pages using static data flow analysis and detect obfuscated strings based on

three metrics that we define. We named our algorithm the Javascript Obfuscation Detector in

Web pages(JODW). In this paper, we focus on JavaScript codes using obfuscation among

various malicious web pages.

JODW is a simple and strong method for detecting obfuscated string in malicious web

pages. Firstly, it searches dangerous functions(eval, document.write, and so on) in web

pages. The functions can execute strings of parameters. Because malicious user uses

obfuscated strings in order to execute dynamic work after transmitting them as parameters of

the functions, we start to parameters of the dangerous functions. Based on the parameters, we

extract all strings related to them using static data flow analysis. After analyzing the strings,

JODW detects obfuscated strings. Lastly, JOWD deofuscates the strings. In order to detect

obfuscated strings in web pages, it demands many elements for automation.

Figure 1. Our methodology for automatic detecting of obfuscated JavaScript

strings in malicious web pages

Figure 1. shows our methodology and system for detection obfuscated strings in malicious

web pages automatically. Our system makes up three modules: StringExtractor,

StringAnalyzer, and StringDeobfuscator. It is as follows:

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

16

- String Extractor Most of malicious web pages call dangerous functions(eval,

document.write) in order to perform malicious activity. Therefore, strings related to

parameters of the dangerous functions have the high possibility that obfuscated strings

are. We focus on the obfuscated strings. We trace all strings related to parameters of

dangerous functions and extract all strings. We classify all strings of JavaScript into

three cases. Based on the cases, we extract all strings using static data flow analysis.

Static data flow analysis traces flow of data without executing web pages in a web

browser. We will explain the mechanism of StringExtractor in chapter 4.

- String Analyzer This module decides whether previous doubtful strings are obfuscated

or not. We define three metrics for detecting obfuscated strings in malicious web pages:

N-gram, Entropy, Word Size. StringAnalyzer detects obfuscated string based on the three

metrics. We will explain the method for detecting obfuscated codes in chapter 5.

- String Deobfuscator If obfuscated strings is detected, this module deobfuscates strings,

and detects malicious codes in the deobfuscated string using patterns for malicious

strings. For instance, in case that IFRAME is included in the strings, it is a malicious web

page because a web browser parsing the tag connects a malicious web site automatically.

In this paper, we focus on StringExtractor and StringAnalyzer in order to detect obfuscated

strings in malicious web pages. We will research for StringDeobfuscator that obfuscated

string deobfuscates automatically in future.

4. Extraction of Obfuscated Strings in JavaScript

In this chapter, we explain the method that extracts all strings related to dangerous

functions of JavaScript before performing the process for obfuscated string detection. Firstly,

we classify all strings in JavaScript codes into three cases. Next, based on the three cases, we

extract all strings related to parameters of dangerous functions using static data flow analysis.

4.1. JavaScript String Classification

In order to extract all strings related to parameters of dangerous functions, we classify all

strings in JavaScript codes into three cases. Table 1 shows the definition for all strings in

JavaScript. In the table, lY denotes a string of JavaScript codes. In order to check whether the

string is obfuscated or not, we search all lY in malicious web pages. f function represent

changes of strings and nxxxx ,...,,, 321 are parameters.

Table 1. Definition for all strings in JavaScript

=

=

=
=∑

=

3,2,1

,...3,2,1,

,,...,,,
),...,,,(

331

1

331

l

mn

stringYxxxx

parameterofvalueisY

xxxxfY
ln

l

m

i

nil

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

17

According to f and parameters, we classify all strings into three cases. In conclusion, all

cases have the possibility of obfuscation. Therefore, all strings related to parameters of

dangerous functions must be checked whether they are obfuscated or not. Three cases are as

follows:

- CASE1 : 1xYl = : NoChange

- CASE2: ∑
=

=
m

i

ixY
1

2
: Concatenation

- CASE3 : ∑
=

=
m

i

ni xxxfY
1

213),...,,(: Change

CASE1(NoChange) : The function f is constant and has one variable, and Y is equal to 1x .

Therefore, the variable 1x is directly transmitted to a parameter of eval or

document.write. For instance, an example code is as follows: var x1 = "3+4"; ...;

eval(x1); eval function uses the string allocated in 1x without modifying the value.

However, another example shows a obfuscated string as follows:

eval("\144\157\143\165\155\145\156\164"). This case is executed after the string

is decoded. Therefore, we analyze the string whether it is decoded or not. In static data flow

analysis, this case is extracted and analyzed directly.

CASE2(Concatenation) : The function f is constant. However, Y concatenates several

strings such as nxxxx ,...,,, 321 . Because this case also has the possibility that Y is obfuscated,

analysis for obfuscation detection must be performed. For instance, an example code is as

follows:

var x1 = "te ActiveX Co"; var x2 = "ntrol"; var x3 = x1 + x2; var

x4 = "Execu" + x3; ... eval(x4);

In this example, 4x is "Execute ActiveX Control". However, because the string is

divided into several strings, a signature-based detect system can't detect the string. Therefore,

the case must be analyzed for obfuscation detection. In static data flow analysis, we divide the

string by a plus(+) character, save each strings, and analyze for obfuscaion detection.

CASE3(Change) : Various functions in malicious web pages decode obfuscated strings.

The functions can be JavaScript functions or user-made functions. In static data flow analysis,

we trace the functions and extract strings related to parameters of them. For instance, an

example code is as follows:

Uul1ItLo["plunger"] = new Array(); var Qn2_R5kv = new Array(32,64,

256, 32768); for (var auLRkELh = 0; auLRkELh < 6; auLRkELh++)

{ for(var x8n9EKml = 0; x8n9EKml < 4; x8n9EKml++) { var CRrtOhOH =

Uul1ItLo["plunger"].length; eval('Uul1ItLo["plunger"][CRrtOhOH] =

GjL08iWK.substr(0, ('+ Qn2_R5kv[x8n9EKml] + '-6)/2);'); } }

In this example, Y is Uul1ItLo["plunger"][CRrtOhOH] = GjL08iWK.substr(0,

(Qn2_R5kv[x8n9EKml]-6)/2);. 1f is Uul1ItLo["plunger"][CRrtOhOH], 2f is =, and 3f is

GjL08iWK.substr(0, (Qn2_R5kv[x8n9EKml]-6)/2). 1f and 3f are functions, and 2f is

constant. Therefore, 1f and 3f are changed by the decoding functions.

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

18

4.2. Extraction of Obfuscated String using Static Data Flow Analysis

Based on three cases for strings of JavaScript, we search and extract all strings related to

dangerous functions using static data flow analysis. Static data flow analysis is to trace data

flow of variables in source codes without executing a program. We trace all strings dangerous

functions written JavaScript in web pages. We focus on eval and document.write as

dangerous functions because the function is used in most of JavaScript obfuscation.

Table 2: Our algorithm for extracting all strings in HTML web pages using

static data flow analysis

−INPUT: HTML Web page(W)

−OUTPUT: All strings related to dangerous functions(S{ nisi ,...,1,0, =)

Extract all JavaScript codes in W
Search dangerous functions and their function pointer reassignment

Update function list(PL{ nipli ,...,1,0, = })
A1 :

Trace ipl

Analyze parameters of the functions

Classify the parameters into strings and functions(P{ nipli ,...,1,0, = })

A2 :

Check what is ip ’s case

If ip is string(CASE1), pi is saved

If ip is string concatenation(CASE2), divide ip ,update ip ,and GOTO A2

If ip is function(CASE3), update PL and GOTO A1

Extract all strings(S) related to dangerous functions

We name the methodology the static data flow analysis in JavaScript(SDFAJ). SDFAJ

extracts all strings in web pages from parameters of dangerous function reversely. The

algorithm for SDFAJ is shown in Table 2. SDFAJ firstly scans text in a web page and extracts

all JavaScript codes in <script> and </script>. Next, SDFAJ search dangerous functions

and their function pointer reassignment. In order to hide the call of dangerous functions in a

malicious web page, a malicious user uses function pointer reassignment such as function1

= eval. SDFAJ traces variables related the functions, and divides them into simple strings

and functions. Considering three string cases, SDFAJ traces all strings from the dangerous

functions. Using the strings, SDFAJ checks what case it is(A2). If it is a string, SDFAJ saves

the value because it traces the string no more. In case of CASE2, SDFAJ splits strings by a

plus(+) character, and saves each value. If it is a function, SDFAJ analyzes parameters, and

divides them into simple strings and function recursively(A1). By doing this, SDFAJ extracts

all strings related to parameters of dangerous functions in malicious web pages.

An example that SDFAJ extracts all strings related to parameters of eval is shown in

Figure 2. The value of parameter of eval is ab3+ab2+"cccd". SDFAF divides it into ab3,

ab2, and "cccd" by + character. Because "cccd" is CASE1, cccd is saved as a string.

Because ab2 is CASE3, it search parameters of the function and extracts the parameter of it.

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

19

It is 112, 108, 97, 105, 110 and is extracted as a string. Lastly, ab3 is CASE2 and is

divided into "ddd" and ab1. ddd is saved because it is a simple string. After SDFAF traces

ab1, it saves cccc in string list. In the example, SDFAJ extracts four strings, such as "ccc",

"112, 108, 97, 105, 110", "ddd", and "cccd". Using these strings, SDFAJ decides

whether they are obfuscated.

Figure 2. An example of string extracting using static data flow analysis in

JavaScript code

5. Detection of Obfuscated Strings in JavaScript Codes

In this chapter, we propose the method to detect JavaScript obfuscated strings in a web

page using all strings extracted by static data flow analysis. In order to check whether a string

is obfuscated or not, we define three metrics: N-gram, Entropy, and Word Size. N-gram is an

algorithm for text search. We search patterns for detecting obfuscated strings after analyzing

normal and malicious web pages. Based on the metrics, we made experiments on detection

for obfuscated strings in real malicious web pages.

5.1. Metrics for Detecting Obfuscated Strings

We define three metrics for detecting obfuscated strings. We search the usage frequency of

ascii code in the strings using byte occurrence frequency as 1-gram. In order to know

distribution of characters in strings, we calculate the entropy based on 1-gram. Lastly, we

analyze the size of word because most of obfuscated strings are very long.

- N-garm checks how many each byte code is used in strings

- Entropy checks distribution of used byte codes

- Word Size checks whether there is used very long string

In order to analyze patterns of normal web pages, we downloaded web page files including

various JavaScript codes. Using OpenWebSpider[9], we collected web pages.

OpenWebSpider is an open source web crawler and controls information about web pages in

MySQL[7] database. Using OpenWebSpider# v0.1.3, we collected web page files in sub

directories of 100 web sites and analyzed them.

5.1.1. N-gram: We check the usage frequency of ascii code in the strings. By doing this,

we can know how many each byte code is used in the string. We use 1-gram among N-gram

and it is equal to byte occurrence frequency. We classify ascii code into three category as

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

20

shown in Table 3. We focus on Special Char among byte codes, because much obfuscated

strings use excessively specific characters such as \, [,], @, x, u, and so on. In strings of

normal JavaScript codes, Alphabet and Number are used evenly among all.

Figure 3. Byte occurrence frequency for various JavaScript Obfuscated strings.

X axis is ascii code number. Y axis is total number of each byte used in strings

and we normalize values of Y axis by maximum value. The target of CASE1 is the

string such as “%u9495%u4590...'', and CASE2 is “\144\156''. CASE3 is the case

that obfuscated string uses various characters, and CASE4 uses Alphabet and

Number.

Table 3. Ascii Code

Name Ascii Code Number Character

Alphabet 0x41-0x5A, 0x61-0x7A A-Z, a-z

Number 0x30-0x39 0-9

Special Char 0x21-0x2F
0x3A-0x40
0x5B-0x5F, 0x7B-0x7E

! “ # $ % & ‘ { } * + , - . /
: ; < = > ? @
[\] ^ _ ` { | } ~

We analyze various obfuscated strings in malicious web pages. Figure. 3 shows patterns of

some obfuscated strings. In this chapter, we analyze four cases among various patterns of the

strings. There exists on various patterns except for the cases. The strings of CASE1 and

CASE2 are related to the decoding mechanism that JavaScript language offers. The stings

such as “%u9495%u4590...” and “\144\156” are decoded in eval function directly, or in

escape and unescape functions. They have excessively specific characters such as “%u”,

“\”, and so on. CASE3 and CASE4 are examples that obfuscated strings need user-made

decoding functions. In cases, there are various patterns of byte occurrence frequency

according to decoding functions. CASE3 has characters in all extent. CASE4 has Alphabet

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

21

and Number characters intensively. We decide that a string is obfuscated if it uses some

specific characters excessively. Based on the analysis result, we define metric1 as follows:

Metric1 : Byte Occurrence Frequency of Specific Character Obfuscated string uses

some specific characters in the string excessively

5.1.2. Entropy: In order to analyze the distribution of bytes, we define entropy as second

metric. Entropy is calculated as follows:

In entropy(E), ib is count of each byte values and T is total count of bytes in a string. If

there are some bytes in a string, E reaches zero. Maximum value of E is logN and it means

that byte codes are distributed widely throughout whole bytes. N is 128 because we focus on

readable strings.

Figure 4. Entropy for various JavaScript strings. Y axis is value of entropy.

Upper region represents that the string has a whole characters widely. Middle

region represents entropy for general JavaScript codes and sentences. Lower

region is that the string has some specific characters excessively and has

possibility of obfuscated string.

We calculate entropy of previous four cases. CASE1 is 1.12249, CASE2 0.82906, CASE3

1.24406, and CASE4 1.09014. The string that includes some kinds of characters has a low

value of entropy, and vice verse. In search entropy ranges of ascii code, we calculate entropy

of a string including all ascii code. The entropy is 1.97313. We select this as maximum value.

An entropy of JavaScript codes in a general web page is roughly 1.6496. Because most

strings are readable sentences, we calculate the entropy of sentences. The strings use alphabet,

number and some special characters(, . “ ”). The entropy is about 1.3093. Collectively, range

of entropy for various JavaScript strings is shown in Figure 4. We set up two ranges: one

region for some specific character, and the other region for general JavaScript codes and

sentences. In Figure 4, we exclude the case because entropy of upper region is an ideal case.

∑
∑= =

=

==
−=

N

i

N

i i

i
ii

bT

NibB

T

b

T

b
BE

1
1

},...,1,0,{
)log()()(

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

22

We decide that a string is obfuscated if entropy is less than 1.2. Based on the analysis result,

we define metric2 as follows:

Metric2 : Entropy obfuscated string has the low value of entropy because it uses some

characters

5.1.3. Word Size: We define the word size as third metric. Because words in JavaScript

code are generally read by man, their sizes are not so long. Many obfuscated strings use very

long word size. For instance, the word size in a malicious web page that we collect is 9,212

bytes. In this metric, we target on a normal string. We divide stings into words by a space

character(0x20). In order to analyze range of normal word size, we analyze various sentences

and JavaScript codes as shown in Fig. 5. In the figure, (a) represents the distribution of word

size in a general sentence. In the sentences, word size is under 30 on the average. (b) is the

distribution of word size in a JavaScript code. The range of word size is from 0 to 300

generally. Based on the analysis result, we define metric3 as follows:

Metric3 : Word Size Obfuscated string has excessive long size of word

Figure 5. Word size in general sentences and JavaScript codes. (a) is the

distribution of word size in general sentences. (b) is the distribution of word size

in a JavaScript code

5.2. Evaluation and Experiments

In this chapter, we applied our three metrics into malicious web pages with obfuscated

strings. We collected 33 real malicious pages. Among these pages, 14 pages include

obfuscated strings. However, some pages are analogous to each other. We exclude similar

pages and experiment 6 kind of malicious web pages. Therefore, we applied our methodology

to 6 patterns of obfuscated strings in malicious web pages. Table 4 shows patterns of each

obfuscated string. We set up value of our metrics as follows:

- Metric1 If the string includes Special Char excessively, it is obfuscated.

- Metric2 If entry of the string is less than 1.2, it is obfuscated.
- Metric3 If word size is more than 350, it is obfuscated.

Results of detection for obfuscated strings in each file based on three metrics are shown in

Table 5.

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

23

- File1 is Obfuscated String Word size is 750 bytes and entropy is less than 1.2. It

includes a backslash(92) character excessively.

- File2 is Obfuscated String Word size is 531 bytes. It include excessively a special
character(124) that does not used mostly in general strings.

- File3 is Obfuscated String Word size is 9,212 bytes. It is very long size.

- File4 isn't Obfuscated String Entropy is more than 1.2, and maximum word size is 29.
Metrics for this pattern is false alarm.

- File5 is suspicious of Obfuscated String It includes bytes code evenly among all and
entropy is more than 1.2. However, it has long word size more than 350 bytes.

- File6 is Obfuscated String It includes some special characters(33 35 36 64).

Among total 6 malicious patterns, we found obfuscated strings in 4 patterns of malicious

web pages and suspected that one pattern includes an obfuscated string. However, we cannot

find one malicious pattern.

Table 4. Partial obfuscated strings in each malicious web page. File1 and File6 is

the string decoded by JavaScript functions. File2 is a JavaScript Code. File3, File4,

and File5 is the string decoded by user-made decode functions

File Name Obfuscated String

File1

File2

File3

File4

File5

File6

\144\157\143\165\155\145\156\164\56

||var|document|object|expires|if|finally|catch|write||

97ACA29baca2B3A5517A99696Bae9B677d995C876a7

eval(rmdiyfrT+eSS9YDtk[VFtUaNvX]);

a1443oe.setTime(a1443oe.getTime()+365*24*60*60*1000);

t!.Wr@i@te(#$q!.res$po#n#s$e@Bo@dy@)@'.replace(/\!|@|#|\$/ig, '')

Table 5. Results of detection for obfuscated strings. Metric1 is byte occurrence

frequency, Metric2 is entropy, and Metric3 is the longest word size in the file.

Values of Metric1 are byte codes used over 50% of maximum frequency number

FileName Metirc1 Metric2 Metric3 Detection

File1

File2

File3

File4

File5

File6

49 53 92

40 41 49 50 101 116 124

54 55 57

34 101 116

49 51 52 59 61 97 101 111 112 114 116

33 35 36 64 101

0.82906

1.71222

1.15289

1.61563

1.65364

1.4207

750

531

9212

29

364

87

YES

YES

YES

NO

SUSPICIOUS

YES

6. Conclusion and Future Work

In this paper, we proposed a novel methodology that can detect obfuscated strings in

malicious web pages. Recently, Obfuscation is used by malicious attackers in order to

circumvent the detection of signature-based security systems. After we analyzed patterns of

malicious and general web pages, we defined three metrics as obfuscation detection rules: N-

gram, Entropy, and Word Size. Based on the metrics, we applied our methodology into real

malicious web pages and evaluated them. The results show that the methodology found 4

patterns for obfuscated strings among 6 patterns for real malicious web pages. It means that

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

24

our methodology is effective for detecting obfuscated strings. We, however, have limitations

that number of patterns our methodology can detect is few, because we has a few patterns of

real malicious web page. As future work, we will be centered on finding new metrics for

detecting obfuscated strings. And we will research the methodology that can deobfuscate

obfuscated strings automatically.

References
[1] Chellapilla, K., Maykov, A.: A Taxonomy of JavaScript Redirection Spam. In: Proceedings of the 3rd

International Workshop on Adversarial Information Retrieval on Web (AIRWeb 2007) (2007)

[2] Chenetee, S., Rice, A.: Spiffy: Automated JavaScript Deobfuscation. In: PacSec 2007 (2007)

[3] Feinstein, B., Peck, D.: Caffeine Monkey: Automated Collection, Detection and Analysis of Malicious
JavaScript. Black Hat USA (2007)

[4] Hallaraker, O., Vigna, G.: Detecting Malicious JavaScript Code in Mozilla. In: Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems (ICECC 2005) (2005)

[5] Ikinci, A., Holz, T., Freiling, F.: Monkey-Spider: Detecting Malicious Websites with Low-Interaction
Honeyclients. In: Proceedings of Sicherheit 2008 (2008)

[6] Livshits, B., Cui, W.: Spectator: Detection and Containment of JavaScript Worms. In: Proceedings of the
USENIX 2008 Annual Technical Conference on Annual Technical Conference (2008)

[7] MySQL - open source database, http://www.mysql.com

[8] Nazario, J.: Reverse Engineering Malicious Javascript. In: CanSecWest 2007 (2007)

[9] OpenWebSpider - open source web spider, http://www.openwebspider.org

[10] Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The Ghost in the Browser Analysis of
Web-based Malware. In: First Workshop on Hot Topics in Understanding Botnets (2007)

[11] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In: Proceedings of the 14th Annual Network and Distributed
System Security Symposium (NDSS 2007) (2007)

[12] Wang, Y., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.: Automated Web Petrol with
Strider HoneyMonkey. In: Proceedings of the Network and Distributed System Security Symposium (NDSS
2006) (2006)

[13] Wassermann, G., Su, Z.: Static Detection of Cross-Site Scripting Vulnerabilities. In: Proceedings of the 30th
International Conference Software Engineering (ICSE 2008) (2008)

Authors

Young Han Choi is currently a senior research engineer in the Attached Institute of

Electronics and Telecommunications Research. His research interests include software

security, intrusion detection systems, and operating system. He received his B.Sc. and

M.Sc. degrees in electronic engineering from Hanyang University and Korea Advanced

Institute of Science and Technology, Korea, in 2002 and 2004, respectively.

Tae Ghyoon Kim is currently a senior research engineer in the Attached Institute of

Electronics and Telecommunications Research. His research interests include software

security, intrusion detection systems, and operating system. He received his B.Sc. and M.Sc.

degrees in electronic engineering from Chungnam National University, Korea, in 1995 and

1997, respectively.

Seok Jin Choi is currently a senior research engineer in the Attached Institute of

Electronics and Telecommunications Research. His research interests include software

International JournalInternational JournalInternational JournalInternational Journal of Security and Itof Security and Itof Security and Itof Security and Its Applicationss Applicationss Applicationss Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

25

security, intrusion detection systems, and operating system. He received his B.Sc. and M.Sc.

degrees in electronic engineering from Kyungbook University and Korea Advanced Institute

of Science and Technology, Korea, in 1995 and 1998, respectively.

International JournalInternational JournalInternational JournalInternational Journal of Security and Its Applicationsof Security and Its Applicationsof Security and Its Applicationsof Security and Its Applications

Vol. 4, No. Vol. 4, No. Vol. 4, No. Vol. 4, No. 2222, , , , AprilAprilAprilApril, 2010, 2010, 2010, 2010

26

