
________________________________________________________________________

14 March 2008

Comparison of File 
Infection on the Windows 

and Linux

Disclaimer:

The author of this document is not responsible of any kind of damage that could be 
made with the bad use of this information. The objective of this paper is for 
educational and research purposes only. It is made for use in viruses, but not as to 
promote any intentional harm or damage on computer systems.

Author: lclee_vx 

lclee_vx@yahoo.com





1.0 Foreword / Introduction

This paper documents the common file infection strategies that virus writers have used over 

the years, conduct the comparison of Portable Executable (PE) file infection on the Windows 

platform and Executable and Linking Format (ELF) file infection on the Linux platform.  

   

So, let’s set the goal: I will go through the file format of PE and ELF, demonstration, source 

code, examples included along with the introduction of simple file infection method on 

Windows and Linux. Here are the two ways (file infection) I will present here:

1. Appending to the PE file with adding a new section – Windows Platform

2. Writes parasite code at entry point and the original data will be stored at end of file – 

Linux Platform

  

Note:

This article is never perfect, so notify me the possible mistakes in this document for further 

updates. Contact me:

Email :  lclee_vx@yahoo.com 

Group : F-13 Labs

Personal Web Site :  http://www.f13-labs.net 

2.0 Useful Things for Coding

You need some tools/references before start code the virus on the Linux/Windows platform. As 

below:

Windows:

1. The tasm 5.0 package – Win32 Assembly Language compiler

2. The API list (Win32 API help file)

3. PE file format – Strongly recommended Matt Pietrek document

4. Basic knowledge on Win32 Assembly Language

5. Assembly IDE – RadASM version 2.2.0.2

6. Debugger – OllyDbg version 1.10 

7. Platform – Windows XP 

Linux:

1. Nasm (Netwide Assembler) version 0.98.39 – Assembly Language Compiler (Linux) 

http://www.f13-labs.net/
mailto:lclee_vx@yahoo.com


Comparison File Infection on the Windows and Linux                                     Page 2 of 10

2. i386-PC-Linux System Call Reference 

3. ELF file format 

4. Basic knowledge on Linux assembly language

5. IDE/Editor – vi

6. Debugger – Data Display Debugger (DDD) version 3.3 and GNU Project Debugger 

(GDB)

7. Platform – Red Hat 8.0 

3.0 Introduction of Portable Executable (PE) File Format 

Win32 refers to the Application Programming Interface (API) available in Windows operating 

systems. It is the set of system functions that are part of the operating system and that are 

available to be called form a Win32 (32-bit) Windows application. 

Basically, the i386 architecture has four privilege levels, also known as rings (Ring0 – Ring3) 

that control the things such as memory access and access to certain sensitive CPU 

instructions. As you noticed we work in a 32 bit environment on the Windows platform, which 

means that memory address are 32 bit (00000000h – FFFFFFFFh) and the memory layout is 

as below:

00000000h – 3FFFFFFFh Application code and data
40000000h – 7FFFFFFFh Shared memory (system dll’s)
80000000h – BFFFFFFFh Kernel
C0000000h – FFFFFFFFh Device Drivers 

Detail information can get from Microsoft website. Here, we will code the simple virus, infect 

the PE file in level Ring3 (00000000h – 3FFFFFFFh) and adding another new section. Let’s see 

how a virus can change an executable header in the following sections. 

Before start the game, it is very important to have cleared the structure of the PE header, 

offset of the section and PE format layout. PE stands for Portable Executable. It is the native 

file format of Win32 such as binary programs (exe, dll, sys, scr) or object files (bpl, dpl, cpl, 

ocx, acm, ax). The meaning of ‘Portable Executable’ is that the file format is universal across 

win32 platform such as Windows 98, 2K and NT. The PE loader of every Win32 platform 

recognizes and uses this file format even when Windows is running on CPU platforms other 



Comparison File Infection on the Windows and Linux                                     Page 3 of 10

than Intel. Like other file formats, PE has different areas called sections such as .text, .data, 

.rdata, .bss and .reloc. 

The most important thing to know about PE files is that the executable codes on disk do not 

need relocation for library calls anymore. Instead, the import address table (IAT) is used for 

that functionality by the system loader. It is also important to note that PE files are not just 

mapped into memory as a single memory-mapped file. Instead, the system loader looks at the 

PE file and decides that what portions of the file to map in. 

 
Figure 1   PE File Layouts on Disk and in RAM 

Figure 1 is a diagram showing a Portable Executable (PE) file layout on disk and RAM when 

executed by a Win32 operating system. The details information of every section in PE file 

format can refer to ‘Overview of PE file format’ by Iczelion.  

The Table 1 as below is the summary of important fields in the PE header, Section Table and 

Import Table in the process of PE file injection. 

Important Fields Functionality



Comparison File Infection on the Windows and Linux                                     Page 4 of 10

PE Header Machine Which CPU this file intended for 
Checked by viruses to ensure they only 
infect x86 platforms

NumberOfSections The number of sections in the file
This field is updated after virus adds a new 
section.

Characteristics What type of file this is (Exe or DLL)
SizeOfCode Size of all the code sections
AddressOfEntryPoint The relative virtual address (RVA) where 

execution begin
Viruses change this to point to the virus code

ImageBase First byte of image in memory 
SizeOfImage The size of the image

Section Table VirtualSize Total size of the section in memory
SizeOfRawData Size of the section on disk
Characteristic What kind of section this is

The Import 
Table

Viruses use the import table to lookup the 
address of any API functions they need to 
call.

Table 1   Summary of Important Fields in PE Files

4.0 Introduction of Executable and Linking Format (ELF)

The Executable and Linking Format was originally developed by UNIX System Laboratories 

(USL) as part of the Application Binary Interface (ABI). The Tool Interface Standards 

committee (TIS) has selected the evolving ELF standard as a portable object file format that 

works on 32-bit Intel Architecture environments for a variety of operating systems. There are 

three types of object files:

1. relocatable file – holds code and data for linking with others object files

2. executable file – holds a program suitable for execution

3. shared object file – holds code and data suitable for linking in two contexts. 

The object file format provides parallel views of a file’s contents, reflecting the differing needs 

of these activities.



Comparison File Infection on the Windows and Linux                                     Page 5 of 10

Figure 2   ELF File Layout

An ELF header resides at the beginning and holds a “road map” describing the file’s 

organization. It provides information such as offsets to program header and section header 

tables, sizes and number of entries. 

A section header table is used to locate and interpret all of the files sections. The table is an 

array [e_shnum] of Elf32_Shdr structures, holding information about section sizes, locations 

and virtual addresses.

A program header table is used to describe segment information the system needs to prepare 

in program loading for execution. It holds information such as virtual addresses, file size, 

segment attributes and so on.  



Comparison File Infection on the Windows and Linux                                     Page 6 of 10

The summary of the important fields in ELF file format as below:

Important Fields Functionality
Elf32_Ehdr e_ident Holds the magic values 0x7f, ‘ELF’ and some flags

e_entry Virtual address of entry point
e_ehsize Size of the ELF header
e_phentsize Size of one entry in the program header
e_phnum Numbers of entrys in the program header

Elf32_Phdr p_vaddr Virtual address in memory
p_addr Physical address 
p_memsz Size of the segment in memory

5.0 Demonstration of PE/ELF File Infection

Let’s make a quick review of the File Infection process on the Windows and Linux. Please refer 

to the attachments for the source code of PE/ELF infector.

PE Infection ELF Infection
1. Get the delta offset – where executing the 

code

Get the delta offset – where executing the 

code
2. Get the Kernel32.dll address Control access to a region of memory, all 

the system call can access with int 80h
3. Get the API functions as below:

- LoadLibraryA

- GetProcAddress

- GetCurrentDirectoryA

- SetCurrentDirectoryA

- FindFirstFileA

- FindNextFileA

- FindClose

- GetFileAttributesA

- SetFileAttributesA

- CreateFileA

- GetFileSize

- GlobalAlloc

- ReadFile

- SetFilePointer

- WriteFile

- GlobalFree

Scan the target file in current directory



Comparison File Infection on the Windows and Linux                                     Page 7 of 10

- CloseHandle

- ExitProcess
4. Scan the target file in current directory Open the file to see if it is infected

Open the file to see if it is infected If infected, exit and return to the host 

program
If Infected, search for another file 

(maximum 3 files)

Else, virus infects target file by overwriting 

host code by viral code. The original host 

code is stored at the end of host file. 
5. Else, File Injection with adding the new 

section

Exit and return control to the host program

6. Copy virus body into the section
7. Exit and return control to the host 

program
 

The detail demonstrations please refer to the attachment.

6.0 Conclusion

There are several reasons for the non-issue of the Linux virus. For a Linux binary virus to 

infect ELF executables and spread, those executables must be writable by the user activating 

the virus. That is not likely to be the case. Chances are, the files/programs are owned by 

power user such as root and the user is running from a non-privileged account. Second, even 

if the Linux virus successfully infects a program owned by the user, its task of propagation is 

made much more difficult by the limited access right of the user account. As we know, Linux 

applications and software is almost all open source. Binary-only products are rare and this is a 

tough place for a Linux virus to hide. Each of the above reduces the reproduction rate of the 

Linux virus. 

Reference

1. Szor, Peter. Attacks on Win32. Virus Bulletin Conference, October 1998, 

Munich/Germany, page 57-84.



Comparison File Infection on the Windows and Linux                                     Page 8 of 10

2. Inside Windows: An In-Depth Look into the Win32 Portable Executable File 

Format: http://msdn.microsoft.com/msdnmag/issues/02/02/PE/defaul  t.aspx  .

3. Microsoft Portable Executable and Common Object File Format Specification: 

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx.

4. Silvio Cesare, 1999. Unix Viruses

5. Billy Belcebu, 1999. Viruses under Linux, Xine – Issue #5

6.  @Computer Knowledge 2000, 2000. Computer Knowledge

   Virus Tutorial

Credit:

1. The Linux ELF infector is inspired of Winux virus of Benny/29A

2. Billy Belcebu, Virus under Unix

3. izee, skyout, robinh00d, synge, moaphie

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx

