
VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 123

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

LINUX VIRUSES – ELF FILE FORMAT

Marius Van Oers
AVERT-NAI Labs, Gatwickstraat 25, 1043 GL Amsterdam, The Netherlands, Europe

Tel: +31 20 586 6136 • Fax: +31 20 586 6101 • Email: mvanoers@nai.com

ABSTRACT

The use of Linux as an operating system is increasing rapidly, thanks partly to
popular distributions such as ‘RedHat’ and ‘Suse’. So far, there are very few Linux
file infectors and they do not pose a big threat yet. However, with more desktops
running Linux, and probably more Linux viruses, the Linux virus situation could
become a bigger problem.

So far, Linux viruses are either prependers or regular file infectors that change entry
points and modify the actual host code etc.

Nowadays, the most common Linux file type in use is called ‘ELF’: short for Execut-
able and Linkable Format. ELF supports 32- as well as 64-bit objects.

This paper will take a look at the Linux ELF file format layout and examine some
file virus infectors.

124 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

1 ELF FILE FORMAT LAYOUT

There are currently quite a few flavours/versions of Linux available. Popular distributions are for
example RedHat and Suse. I used two versions of RedHat. The main reason for this is that Linux
virus infection/replication might be dependent on the Linux version/kernel level. The test sys-
tems used for the purposes of this paper were RedHat 5.2 (Apollo) – Kernel 2.0.36 – on an i586,
and RedHat 6.1 (Cartman) – Kernel 2.2.12-20 – on an i686.

Nowadays, the most common Linux file format type in use is called ELF. ELF is short for Ex-
ecutable and Linkable Format. Objects can be viewed from a Linking or Executable perspective.
Linking view is important if you want to build/compile files and want to ‘link-in’ a specific file.
Execution view is important for ‘running’ a specific file. The different viewing perspectives are
shown in Figure 1.

Linking View Execution View
ELF Header ELF Header
Program Header Table (optional) Program Header Table
Section1 Segment 1
Section2 Segment 2
.. ….
Section Header Table Section Header Table (optional)

Figure 1: ELF objects can be viewed from a Linking or Executable perspective.

Local Test Systems Used: RedHat 5.2 (Apollo) Kernel 2.0.36 on an i586
RedHat 6.1 (Cartman) Kernel 2.2.12-20 on an i686

So, for the linking view, the Sections and Section Header Table are important, the Program
Header Table is optional. On the other hand, for the execution view, the Segments and Program
Header Table are important, and the Section Header Table is optional.

Usually, a file may contain both a Program Header Table and Segments, as well as a Section
Header Table and Sections. However, according to the specific viewing perspective, certain areas
are important and others are not. ELF supports 32- as well as 64-bit objects. Usually, a Linux
installation on an Intel-based system is 32-bit. However, an installation on a Dec Alpha-based
system might be 64-bit; this is not very common as not many people use Dec Alpha systems, but
in the future we might see more 64-bit systems coming from Intel, AMD etc.

1.1 ELF Header

In the sample analysis below, an arbitrary file is selected – in this case ‘arch’, a clean Linux
Redhat v5.2 executable file, which was found in …/bin/arch. This file is marked with (*) in our
analysis to indicate that the values found are specifically for this file. Figure 2 shows the begin-
ning of the file viewed with a hex editor.

The ELF file format is well documented and available at various locations on-line (see refer-
ences). Let’s start with a line-by line inspection of what we would -encounter. Usually, just to get
an indication, the ELF Header occupies the area from 0000-0033 (hex).

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 125

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

0000–0003 EI_MAG0-EI-MAG3: ELF identification
0004 EI_CLASS: 1: 32 bit object *

2: 64 bit object
0005 EI_DATA Encoding: 1: LSB * (value reading from right to left)

2: MSB (value reading from left to right)
0006 EI_VERSION: ELF Header version number, currently it is the same as EV_CURRENT
0007-000F EI-PAD: Unused/Reserved

0010-0011 E-TYPE: 1: Relocatable file
2: Executable file *
3: Shared object file
4: Core file

0012-0013 E_MACHINE 3:Intel 80386 *
0014-0017 E_VERSION Object File Version

0: Invalid
1:Current version *

0018-001B E-ENTRY Virtual Address Starting Process
001C-001F E-PHOFF Program Header Table, File Offset (*: 34)

0020-0023 E_SHOFF Section Header Table, File Offset (* : in this case it starts at byte 07C0)
0024-0027 E_FLAGS Processor Specific Flags
0028-0029 E_EHSIZE ELF Header Size (*:in this case: 34(h) bytes, and at byte 0034 the

Program Header Table starts.)
002A-002B E-PHENTSIZE Each Program Header Table’s Item Size (*:in this case each item occupies

20(h) bytes)
002C-002D E_PHNUM Number of Items in Program Header Table (*: in this case 5 items)
002E-002F E_SHENTSIZE Each Section Header Item’s Size (*:in this case each item occupies

28(h)bytes)

0030-0031 E_SHNUM Number of Items in Section Header Table (*:in this case 16(h) entries,
index 0-15(h)

0032-0033 E_SHSTRNDX String Table Index in Section Header Table

In this case, therefore, for the clean RedHat v5.2 file called arch (*):

• the Program Header Table starts at 0034, (e-phoff)

Figure 2: A clean Linux RedHat v5.2 executable file /bin/arch (*)

126 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Figure 3: File header overview. 0000-0033: ELF header, 0034-00D3: Program Header Table

Figure 4: Program Header Table (location 34-D3) with the five Segment entries (the start of each entry is
graphically marked with the sign |)

• there are five items (for Segments), with index 0-4, of 20(h) bytes, (e_phnum, e-phentsize).
Item(0) of program header starts at 0034
Item(1) follows after 20 (h) bytes at 0054
Item(2) at 0074
Item (3) at 0094 and
Item(4) at 00B4.

• the Program Header Table occupies space from 34 to D3.

A global overview of the file header (for arch *) marking the ELF Header and the Program
Header Table is displayed in Figure 3.

1.2 Program Header Table

Now, let’s examine the file from the Executable perspective, looking for Segments. We have
seen before that in this case (*) the Program Header Table starts at 0034 with five items (index
0-4) of 20(h) bytes. Item(0) of program header starts at 0034, item(1) follows after 20(h) bytes at
0054, item(2) at 0074, item (3) at 0094 and item(4) at 00B4.

The Program Header Table determines the Segments – this information is needed for executable/
shared object files. A Segment may contain multiple Sections. The Program Header Table with
the five (Segment) entries is shown in Figure 4.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 127

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

So, the Program Header Table has five (Segment) entries. Let’s start by looking at the first
(Segment) entry, at location 0034-0053. To make it clearer, the specific area has been extracted
from Figure 4, and is shown in Figure 5.

0034-0037 : P_TYPE Segment type, in this case value 06.
0038-003B : P_OFFSET Segment offset, value from beginning of file, in this case of value

34. This Segment starts at 34, which is the start of the Program
Header Table.

003C-003F : P_VADDR Segment Virtual Address, this case 08048034
0040-0043 : P_PADDR Segment Physical Address, this case 08048034
0044-0047 : P_FILESZ Size in bytes in file, in this case A0 bytes. So, with this Segment

starting at 34, the next Segment will start at offset 34+A0=D4,
which is the start 0034-0037:P_TYPE Segment type, in this
case value 06.

0048-004B : P_MEMSZ Size in bytes in Memory Image, this case A0 bytes.
004C-004F : P_FLAGS Segment Flags.
0050-0053 : P_ALIGN Segment Alignment, in File and Memory Image.

After performing a similar check for all five (Segment) entries, the results presented in Figure 6
were obtained:

Note that the File Location area is given by: Offset (first value) + FilesSZ.

Comments on the Segment types:

• Segment ‘0’ has the type value 6: PT_PHDR, the Program Header itself. The file location
range 34–D3 is, indeed, the correct area.
• Segment ‘1’ has the type value 3: PT_INTERP, the location of a null-terminated path
name to invoke as an interpreter. In this case: /lib/ld-lix.so.2.
• Segment ‘2’ has the type value 1: PT_LOAD, the loadable Segment.
• Segment ‘3’ has the type value 1: PT_LOAD, the loadable Segment.
• Segment ‘4’ has the type value 2: PT_DYNAMIC, dynamic linking information.

1.3 Section Header Table

Having examined the Program Header Table and the Segments, it is now time to look at the

Figure 5: The first (Segment) entry in the Program Header Table is at location 34-53

Segment Type File Location vaddr filesz memsz flags align

‘0’ 6 0034-00D3 08048034 A0 A0 5 04
‘1’ 3 00D4-00E7 080480D4 13 13 4 01
‘2’ 1 0000-0585 08048000 0585 0585 5 1000
‘3’ 1 0588-064B 08049588 C4 C8 6 1000
‘4’ 2 05C4-064B 080495C4 88 88 6 04

Figure 6: Overview of the five segments as given by the Program Header Table

128 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Figure 7: Section Header Table with Section entries, location 07C0-0B2F

Figure 8: Section entry #1 in the Section Header Table, at location 07E8-080F

Section Header Table and Sections.

The Sections Header Table and Sections contain important information when linking. The ELF
Header shows that for the case of arch (*):

• the Section Header Table starts at 07C0, (e-shoff).
• in total 16 (h) (section) items (index 0-15(h)) of 28 (h) bytes, (e_shnum, e_shentsize).
• Item(0) of section header table starts at 07C0, item(1) follows after 28 (h) bytes at 07E8,
item(2) at 0810, ... item(14) at 0AE0, item (15) from 0B08, until EOF (End Of File) 28 (h)
bytes further at 0B2F.

The Section Header Table with (section) entries is shown in Figure 7:

Sections

The Section Header Table has 16(h) Section entries: entry #0 starts at 07C0, #1 at 07E8, #2 at
080F. Let’s start by looking at section entry #1. To make it clearer, the specific area has been
extracted from Figure 7 and is shown in Figure 8:

The first four bytes hold the name of the Section item, and so for entry #1:

07E8-07EB : SH_NAME
07EC-07EF : SH_TYPE 1: SHT_PROGBITS
07F0-07F3 : SH_FLAGS 2: SHF_ALLOC (4: SHF_EXECINSTR)
07F4-07F7 : SH_ADDR Starts address Memory Image : 0x080480D4

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 129

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

07F8-07FB : SH_OFFSET Offset from beginning of file : D4 bytes. So, in this case, Section 1
starts at file location 00D4.

07FC-07FF : SH_SIZE This Section size is 13 (h) bytes, so section #1starts at address
00D4 until 00D4+13=00E7. So, section #2 will probably start at
00E8. To make sure, if we look at Section Header Table #2, we see
that the starting byte offset is 00E8, so it is correct.

0800-0803 : SH_LINK
0804-0807 : SH_INFO
0808-080B : SH_ADDRALIGN Alignment constraints, 0-1: no constraints.
080C-080F : SH_ENTSIZE Size of each sub-entry if multiple sub-entries exist, (*) 0: none.

After performing a similar check for all 16(h) Section entries, the results shown in Figure 9 were
obtained.

According to the ELF Header, the E_ENTRY (0018-001B) virtual address starting process starts
at the value (*) 08048460. So this means that the section with index ‘A’ is the entry point –
located at the file offset location 0460 from the beginning of the file.

So, so far for this sample (*), we have: Linking View
0000-0033 : ELF Header
0034-00D3 : Program Header Table
00D4-07BF : Sections
07C0-0B2F : Section Header Table

1.4 The GNU Debugger – gbd

The various Sections can also be obtained by debugging the file using gdb, the GNU debugger.
(It can, for example, debug programs C/C++ etc.)

Section Index File Location Image address Type Flags
0 — — — —
1 00D4-00E7 080480D4 1 2 .interp
2 00E8-0183 080480E8 5 2 .hash
3 0184-02C3 08048184 B 2 .dynsym
4 02C4-037B 080482C4 3 2 .dynstr
5 037C-0383 0804837C 9 2 .rel.got
6 0384-038B 08048384 9 2 .rel.bss
7 038C-03BF 0804838C 9 2 .rel.plt
8 03C0-03EB 080483C0 1 6 .init
9 03EC-045F 080483EC 1 6 .plt
A 0460-055F 08048460 1 6 .text (E_ENTRY)
B 0560-057B 08048560 1 6 .fini
C 057C-0587 0804857C 1 2 .rodata
D 0588-058B 08049588 1 3 .data
E 058C-0593 0804958C 1 3 .ctors
F 0594-059B 08049594 1 3 .dtors
10 059C-05C3 0804959C 1 3 .got
11 05C4-064B 080495C4 6 3 .dynamic
12 064C-06AF 0804964C 8 3 .bbs
13 (.commnt), 14 (.note), 15..

Figure 9: Overview of the 16(h) Sections as given by the Section Header Table

130 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

I put the file arch in the directory/danger.

[root@localhost /danger]# gdb arch <enter>
(gdb) maintenance info sections <enter>

q
[root@localhost /danger]#

This gives the various Sections. Or alternatively, you can use:

[root@localhost /danger]# gdb arch <enter>
(gdb) info files <enter>

q
[root@localhost /danger]#

This gives the various Sections and mentions the file type (ELF32-i386) and the (Image) entry
point : 0x08048460.

1.5 Looking at other files

Now let’s take a look at other 32-bit files, using RedHat 5.2 on an Intel system. The Image entry
[E_ENTRY] can be looked up in the ELF Header. One way to determine the file entry point is by
searching for the specific Section entry which has exactly the same Image as that given by
[E_ENTRY].

• Note that EI_CLASS, at offset 0004, has value 1: 32 bit object.
• Note also that EI_DATA, encoding, at offset 0005, has value 1: LSB (value reading ‘from right
to left’).

So, look up the Image (E_ENTRY=SH_ADDR) under the Section Header Table – the
SH_OFFSET is given by the next four bytes. For example, for ARCH, E_ENTRY =
0x08048460, and so one needs to search the Section Header Table for 60 84 04 08.

When found, the next 4 bytes are: 60 04 00 00, so SH_OFFSET is: 0x0460. Consider the follow-
ing three files:

10/07/98 02:27a 19,116 UMOUNT 080492CC 12CC
10/16/98 12:11a 3,168 USLEEP 08048470 0470

09/10/98 08:49a 45,388 ZCAT 08048E40 0E40

For these files, the physical file entry point location = [E_ENTRY] – 0x08048000.

32-bit files
Let’s try a similar check on 32-bit files, on a Sun Solaris 2.6.
File: Adb

• Note that EI_CLASS, at offset 0004, has value 1: 32 bit object.
• Note also that EI_DATA, encoding, at offset 0005, has value 2: MSB (value reading ‘from left
to right’).

So, look up the Image (E_ENTRY = SH_ADDR) under the Section Header Table – the
SH_OFFSET is given by the next four bytes. For example, for Adb, the E_ENTRY

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 131

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

= 0x00013BAC.

When found, the next four bytes are 00 00 3B AC, and so SH_OFFSET is: 0x3BAC

02/15/00 03:21p 124,680 adb 00013BAC 3BAC
02/15/00 03:21p 345,728 admintool 00018BF0 8BF0

02/15/00 03:21p 15,784 aliasadm 000111E4 11E4

So, for these three files, the physical file entry point location = [E_ENTRY] – 0x00010000.

64-bit files
Again, let’s a similar check on 64-bit files, Red Hat 5.2 on a Dec Alpha.
File: arch

• Note that EI_CLASS, at offset 0004, has value 2: 64 bit object.
• Note also that EI_DATA, encoding, at offset 0005, has value 1: LSB (value reading ‘from right
to left’).

So, look up the Image (E_ENTRY=SH_ADDR) under the Section Header Table – the
E_ENTRY = 0x20000650, so search the Section Header Table:

Now, instead of the next four bytes (32-bit), the offset is given after the next eight bytes (64-bit).
In this case: 0x0650.

02/18/00 09:26a 4,392 arch 20000650 0650
02/18/00 09:26a 109,128 ash 200013C0 13C0
02/18/00 09:26a 244,896 ash.static 20000100 0100

02/18/00 09:26a 7,920 basename 20000980 0980

So, for these four files, the physical file entry point location = [E_ENTRY] – 0x20000000.

In the previous three cases we have seen:

physical file entry point location = [E_ENTRY] – 0x08048000
physical file entry point location = [E_ENTRY] – 0x00010000

physical file entry point location = [E_ENTRY] – 0x20000000

For these samples it seems like an Image Base. Sometimes it is the same as the lowest Seg-
ment’s VADDR, although this is not the case for all samples.

132 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

According to documentation:

‘The base address of a file is calculated during execution from 3 values:

• memory load address
• maximum page size
• lowest virtual address of a program’s loadable segment

The virtual addresses in the program headers might not represent the actual virtual addresses of the
program’s memory image.

To compute the base address, one determines the memory address associated with the lowest
p_vaddr value for a PT_LOAD segment. One then obtains the base address by truncating the
memory address to the nearest multiple of the maximum page size. Depending on the kind of file
being loaded into memory, the memory address might or might not match the p_vaddr values.’

2 ELF FILE VIRUSES

Unix/Linux is a very good security model. For example, without root (administration) rights it is
very difficult to change ELF binary files. So, for a virus to be successful, it needs high rights.
Another aspect to consider is that there are quite a lot of different ‘flavours’ of Unix around, and
so a Unix virus will most likely not infect on all systems. Nevertheless, with the increase of
popularity of Linux it is possible that we will see more Linux viruses in the future.

Generally, a file virus can either be a relatively simple prepender or of a more advanced nature –
for example by changing internal section items. Recently, at the beginning of 2000, a number of
Linux viruses were encountered – they were from virus collections, however, and not ‘real’
infections from in the wild.

2.1 Lin/Bliss

The first Linux binary virus, Lin/Bliss, was encountered in 1997 – it demonstrated that Linux
could be vulnerable to binary viruses. Lin/Bliss is a relatively simple prepender, and so far there
are a few variants (prepending either 17,892 or 18,604 bytes). The infected files have two ELF
headers, the first from the virus, the second from the original (uninfected) file. For infected files:

The second ELF header starts at offset 45E4 (hex) = 17,892 (dec), or
the second ELF header starts at offset 48AC (hex) = 18,604 (dec).

So, with prependers like Lin/Bliss, detection and repair is easy.

Technical Details
For a Lin/Bliss sample called BLI17892.LNX:

EI_Class: 1 – 32-bit.
EI_Data: 1 – LSB, value reading from right to left.
E_Entry: 08049120.
Section Header Table Offset: 429C (28 bytes Table Section items, 15 sections in all, which

within viral range of 45E4 total virus code).
Program Header Table, Offset: 34 (20 hex entries in Table, five entries)

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 133

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Part of a Lin/Bliss-infected file is shown in Figure 10:

2.2 Lin/Glaurung.676/666 (alias Mandragore)

A so-called appending virus, Lin/Glaurung is encrypted. When running infected samples on a
an Intel machine with RedHat 5.2, an error occurs reporting a ‘Segmentation fault’ (i.e. core
dumped). This error was encountered with all samples on the specified machine and, as ex-
pected, no replication/further infection was seen.

So, the good thing is that a Unix virus will probably spread only on certain flavours and/or
versions or kernel versions of Unix operating systems. This is a bad thing for the AV industry
since it requires more test machines running the various Unix/Linux configurations in order to
investigate samples fully.

When running infected samples on an Intel machine with RedHat 6.1, no error occurred. The
direct infection mechanism simply infected a lot of ELF binary files in the /bin directory after
running one infected file just once.

RedHat 6.1 file called DOEXEC, ‘clean’ file size is 3,028 bytes (dec), (0BD3 hex)
RedHat 6.1 file called DOEXEC, ‘infected’ file size is: 3,694 bytes (dec), (0E6E hex) – an
increase of 666 bytes (dec), (29A hex).

The infected file header is shown in Figure 11a, the infection mechanism in Figure 11b.

The entry EI_PAD, from offset 0007-000F, is normally unused/reserved (normally 00). In all
Lin/Glaurung-infected files, the byte at offset 07 is used, with the value 21 (hex). This seems to
be a quick marker to determine if the viral code is already present or not. For the file DOEXEC:

E-entry value File entry value
Clean 0x08048320 0x0320
Infected 0x08049BD4 0x0BD4

The infected file entry value for DOEXEC (0x0BD4) is exactly the start of the appending viral
code (remember the EOF of the clean file was 0BD3 hex). The Program Header Table has six
entries, numbered 0 to 5. Table entry #3 differs in its clean and infected states:

• Clean P_Filesz, size in bytes in file: 0x00E0, infected: 0x0A1E
• Clean P_Memsz, size in bytes in memory Image: 0x00F8, infected:0x0A1E

Figure 10: Lin/Bliss-infected file

134 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Figure 11b: The Lin/Glaurung infection scheme

2.3 Lin/Silv.A

This infects without problems on an Intel machine running RedHat 5.2. The clean file ‘arch’ has
a file size of 2,864 (dec) bytes, whereas the infected file is 8,831 bytes long, representing an
increase of 5,967 bytes. This virus does not append/prepend but inserts its code into slack space.
As a result, the file size increase with this 32-bit file infector is hardly constant. Figure 12a
shows the Lin/Silv-infected ‘arch’ (*) file. Looking at the ELF header, we can see that
E_SHOFF (offset from the beginning of the file to the Section Header Table) has been changed.

E_SHOFF (clean): 0x07C0
E_SHOFF (infected): 0x1EE7, so the Section header is further down in the file. An

observation such as this could be the first sign that viral code has
been inserted between regular code.

• The value for E_SHNUM (the number of items in the Section Header Table)
changed as well, from 16(h) to 17(h). The virus seems to add one Section (Data1).
• Consequently, E_SHSTRNDX (the String table index in the Section Header
Table) was changed from 15 to 16.

Figure 11a: Lin/Glaurung-infected file

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 135

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Bearing in mind the Segment information for the clean ‘arch’ (*) file (see Figure 6), the informa-
tion for Segment 3 of the infected file is now:

Segment Type File Location vaddr filesz memsz flags align

‘3’ 1 0588-1D6D 08049588 17E5 17E9 6 1000

As can be seen, in the Infected file the value for P_FILESZ for segment ‘3’ has changed from C4
to 17E5, which accounts for a file size increase of 1,721(h) bytes (5921(d)). This is very close to
the total file size increase of 5,967(d) bytes (for this specific sample only). So, the file location is
0588 to 0588+17E5 = 1D6D.

Also, the value for P_MEMSZ in the infected file has increased from C8 to 17E9. This also
represents an increase of 1721(h) / 5921(d) bytes. The Section layout Image address is given by
gdb arch files information, as shown in Figure 12b below:

Clean ‘arch’ Lin/Silv.A-infected ‘arch’
File type ELF32-i386 File type ELF32-i386
Entry point: 0x08048460 Entry point: 0x08048460

0x080480D4 – 0x080480E7 .interp same
80E8 8184 .hash same
8184 82C4 .dynsym same
82C4 837C .dynstr same
837C 8384 .rel.got same
8384 838C .rel.bss same
838C 83BC .rel.plt same
83C0 83EC .init same
83EC 845C .plt same
8460 8560 .text(e_entry) same
8560 857C .fini same
857C 8585 .rodata same
9588 958C .data same
958C 9594 .ctors same
9594 959C .dtors same
959C 95C4 .got same
95C4 964C .dynamic same
964C 9650 .bbs ßà 964C AD6D .data1

Figure 12b: Lin/Silv-infected file changes Section

Figure 12a: Lin/Silv-infected file

136 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Figure 12d: Lin/Silv.A-infected ‘arch’ file

We can see that this virus places its viral code at the end of the host file. The virus does not seem
to change the entry point (e_entry). So, how does the virus code become activated? Well, al-
though the virus does not seem to change the entry point (e_entry) initially, it actually modifies
the code at the entry point such that it takes control.

2.4 Lin/Obsidian.E

The viruses in the Lin/Obsidian family do not replicate correctly on all systems. The variants A
through D did not replicate whatsoever under RedHat 5.2. The .E variant, however, replicated
fine. Lin/Obsidian.E is a so-called prepender, inserting its viral code before the target file. So, in
this case we end up with a file with two ELF headers: firstly, the viral one and secondly, the one
from the regular work file. As an example, let us look at a sample file called DOEXEC:

Clean file DOEXEC: 2,652 bytes (dec), RedHat 5.2, ELF32-i386
Infected file DOEXEC: 10,652 bytes (dec)

Clean ‘arch’ file:

Infected ‘arch’ file:

Figure 12c: Lin/Silv modifies the actual code at the unchanged entry point

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 137

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

E-Entry Image infected file doexec.inf: 08048970, this is pointing to a file location which is well
within the viral body – nothing strange here (for this sample series: 0x08048970-0x08048000 =
0x0970). The infected files are really strange in the following respects:

• If we try to use gbd on the file, using ‘gdb doexec.inf’, an error message results
(“/danger/doexec.inf” : not in executable format: File truncated).
• If we use the command ‘info files’ nothing happens, no information is provided.
• If we try to use the command ‘maintenance info section’ then nothing happens,
again no information is provided.

If we look at the infected file called DOEXEC.INF manually, we see that the second .ELF
header starts at offset 1F40(h), so the virus inserted 8,000 bytes. This is OK if we look at the file
increase from 2,652 to 10,652. So, all the viral code seems to be inserted, with nothing in be-
tween or appended.

If we look at the Section Header Table Offset, for all samples it always has the value 25F0. This
is strange for two reasons. Firstly, the value is always constant for all infected files, which would
indicate that the Section Header Table is at a random, incorrect location. Secondly, the virus
inserts 1F40(h) bytes in total, so the Section Header Table Offset as given in the viral code (in
the first ELF header) is pointing to a random location in the ‘second part’ of the file (the code
from the regular work file). But infected files still run. Why? The question is therefore:

Can the Section header table be ignored for executing files?
I took a clean RedHat 6.1 file called ‘arch’, for which the Section Header Table offset was
0x0890. I replaced the complete Section Header Table with zeroes until the file ended at
0x0C77. I also took a clean RedHat 6.1 file called ‘date’, for which the Section Header Table
offset was 0x64EC. Again, I replaced the complete Section Header Table with zeroes until the
file ended at 0x68FC. I tried to execute both of these files and they both ran fine!

From the ELF documentation we recall that we can look at binary files from different view-
points. For a Linking viewpoint, a Section Header Table is required. At a minimum, the ELF
header (the Program Header Table is optional), Section1, Section2, etc, and the Section Header
Table are required. From an Execution viewpoint, a Section Header Table is optional, and the
minimum requirements are the ELF header, Program Header Table, Segment1, Segment2, etc.

If we look at the infected file called DOEXEC.INF manually, we see that the following informa-
tion can be retrieved from the Program Header Table concerning the various Segment items for
the viral code:

Figure 13: Linux/Obsidian.E infection scheme

138 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Segment Type Offset Vaddr Filesz Memsz Flags Alignment File location
‘0’ 06 34 08048034 A0 A0 5 4 34-D4
‘1’ 03 D4 080480D4 13 13 4 1 D4-E7
‘2’ 01 00 08048000 17A5 17A5 5 1000 00-17A5
‘3’ 01 17A8 0804A7A8 0130 0268 6 1000 17A8-18D8
‘4’ 02 1850 0804 A850 88 88 6 4 1850-18D8

The infection scheme employed by Lin/Obsidian.E is shown in Figure 13.

2.5 Lin/Vit.4096

Lin/Vit.4096 samples did infect on my test system running 32-bit Intel i586, Redhat 5.2.

Clean file (DOEXEC): 2,652 bytes, 0A5C(h)
Infected file (DOEXEC): 6,748 bytes, 1A5C(h)

On the sample file, the virus adds 4,096 bytes, 1000(h)

The clean E_Entry has the value: 0x080484700
The viral E-Entry has the value: 0x08048B3C

The virus changes the section called ‘.Fini’ (the maintenance information sections):

Clean file DOEXEC Infected file DOEXEC
080484D0-080484EC .Fini 080484D0-08048DB6 .Fini

Clean file DOEXEC: Section Header Table starts at offset 0x0714 from beginning of file.
Infected file DOEXEC: Section Header Table starts at offset 0x1714 from beginning of file.

The various segment changes after the file was infected by Lin/Vit.4096 can be seen in Figure
14a. Figure 14b shows a section of the viral code inserted into the middle of the file, and the end
of the viral code can be seen in Figure 14c.

Clean file DOEXEC Segments:

Segment Type FileLocation Vaddr FileSz MemSz Flags Align [FileUsage]
 ‘0’ 06 34 08048034 A0 A0 5 04 0034-00D4
 ‘1’ 03 D4 080480D4 13 13 4 01 00D4-00E7
 ‘2’ 01 00 08048000 04EC 04EC 5 1000 0000-04EC
 ‘3’ 01 04EC 080494EC BC C0 6 1000 04EC-05A8
 ‘4’ 02 0520 08049520 88 88 6 04 0520-05A8

Infected file DOEXEC Segments:

Segment Type FileLocation Vaddr FileSz MemSz Flags Align [FileUsage]
 ‘0’ 06 34 08048034 A0 A0 5 04 0034-00D4
 ‘1’ 03 D4 080480D4 13 13 4 01 00D4-00E7
 ‘2’ 01 00 08048000 0DB6 0DB6 5 1000 0000-0DB6
 ‘3’ 01 14EC 080494EC BC C0 6 1000 14EC-15A8
 ‘4’ 02 1520 08049520 88 88 6 04 1520-05A8

Figure 14a: Lin/Vit.4096-infected file Segment differences

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 139

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

So we see that for the DOEXEC sample file, the Lin/Vit.4096 virus inserts its viral code at the
start of segment ‘3’. The original segment ‘3’ is moved down by 1,000(h)/4,096(d) bytes. A
similar situation exists for the gnu/gcc/symtab and Section Header Table (Figure 14d). The
original segment ‘3’ started at offset 04EC from the beginning of the file, yet in the infected file:
it starts at offset 14EC. However, the virus does not take up the full 1,000(h) bytes. In the case of
our test file DOEXEC, the actual viral bytes end (with vi324.tmp) at offset 0DB6, which is the
end of Segment ‘2’ in the infected file, leaving the area from 0DB6 to 14EC for zeroes/empty
space.

2.6 Lin/Diesel

Under a 32-bit Intel i586 with Redhat 5.2, samples were readily infected with Lin/ Diesel.969:

Clean file base name: 4,892 bytes (dec)
Infected file base name: 5,909 bytes (dec)

The clean E_Entry has the value 0x08048680, the entry at the file is at offset 0680 from the
beginning. The virus does not change the value for E-Entry, but instead changes the actual bytes
at the entry point, as shown in Figure 15a.

The virus puts/overwrites its viral at location 0680 (file entry) to 0A49, which is 3C9(h) bytes
(969dec). The end of the viral code can be seen in Figure 15b:

Clean DOEXEC file:

Infected DOEXEC file:

Figure 14b: Lin/Vit inserts code to the ‘middle’ of the file, Section 3 in this case, at 04EC

Figure 14c: The end of the Lin/Vit viral code, followed by filling up/alignment zeroes

Infected base name:

Clean base name:

Figure 15a: Lin/Diesel changes bytes at the entry point, not the entry point itself

140 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Figure 14d: Lin/Vit infection scheme

The original bytes in the host file that got replaced/overwritten are appended at the end of the file
(after the original file end, therefore following the Section Header Table). A summary of the
infection scheme adopted by Lin/Diesel is shown in Figure 15c overleaf.

VIRUS BULLETIN CONFERENCE, SEPTEMBER 2000 • 141

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Clean base name:

Infected base name:

Figure 15b: Lin/Diesel – end of viral code

3 SUMMARY AND CONCLUSIONS

Linux virus techniques:

• Prepending viral code
• Appending viral code
• Adding a section
• Increasing an existing section

Figure 15c: The Lin/Diesel infection scheme

142 • VAN OERS, LINUX VIRUSES – ELF FILE FORMAT

VIRUS BULLETIN CONFERENCE ©2000 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England.
Tel +44 1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, without the prior
written permission of the publishers.

Things to consider:

• Replication might be OS (RedHat in this case) version/kernel-dependent
• Searching E_Entry in the Section Header Table then determining its file offset does
not always work. Remember, the Section Header Table is not needed for Execution
viewing.

Conclusions:

• Documented ELF file format might increase virus risk
• Native ELF Linux viruses are technically possible
• Linux viruses could become an issue of increased importance, as the popularity of
the Linux OSes increases.

5 REFERENCES

• Full documentation on the ELF layout is available at various locations on-line. For example,
http://suncite.unc.edu/pub/Linux/GCC/ELF.doc.tar.gz

• A lot of good information on gdb is available in the following book:
‘Using GDB: A guide to the GNU Source-Level Debugger’, Richard M. Stallman and Roland H.
Pesch. The book is also available on-line.

