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Abstract. In this article, we briefly review some of the most important
open problems in computer virology, in three different areas: theoretical
computer virology, virus propagation modeling and antiviral techniques.
For each area, we briefly describe the open problems, we review the state
of the art, and propose promising research directions.

1 Introduction

Research in computer virology is still somehow controversial. A widely
spread misconception believes that researching on computer virus propa-
gation is neither interesting, nor productive: it is potentially dangerous,
since it can lead to the development of more devastating techniques of
viral infection, and in any case it is just a waste of time, because the
job of fighting computer viruses is limited to the “catch, analyze, deploy
signatures” cycle typical of the anti-virus industry.

This widespread belief explains why there are just a few research
teams in universities and research organizations worldwide that deal with
computer virology. An insufficient dissemination and knowledge of the few
remarkable theoretical results that have been obtained until now in this
field partly accounts for this belief. Upon closer examination, these results
demonstrate that, on the contrary, a deep research in computer virology
is absolutely urgent and essential.

In order to maintain a relatively efficient protection of our systems, in
order to try and anticipate computer viral hazards before they actually



materialize in the hands of attackers and malware writers, we need to
understand in depth the threat we are facing, and how it is evolving.
We cannot rely on a “wait and see” approach, but we must anticipate
technological evolutions.

Unfortunately, many open problems still exist as far as computer vi-
rology is concerned, in both theoretical and technical aspects. Many other
problems will doubtlessly emerge in the future, due to the ingenuity of
malware writers. In the meantime, computer systems become more and
more complex, more and more sensitive, making old virus protection and
defense models progressively inadequate.

The purpose of this paper is to present what we believe to be the
most interesting open problems in computer virology. We selected the
problems whose resolution, or in-depth study, is likely to generate a valu-
able contribution to the level of the field, and also to improve the quality
of detection and protection applications. Also, we tried to focus on the-
oretical problems in computer virology, which can motivate scholars in
theoretical computer science or in mathematics to research in this field.
Computer virology is not just an endless hunt between virus coders and
antivirus labs, but offers a lot of theoretically deep problems to fathom.

We focused on four major aspects, which correspond to the general
organization of the paper. Section 2 deals with open problems in theoret-
ical computer virology. Founding fathers of this field, like Fred Cohen or
Leonard Adleman, have produced essential theoretical results, thus giving
birth to computer virology as we know it. But their seminal works have
opened up other interesting problems that are still to be solved. Another
aspect comes from the fact that the theoretical models they proposed tend
to become unsuitable to describe some new viral risks. Many complexity
issues still require researchers’ attention. Classification aspects are worth
considering in order to help to clearly identify the true and complete na-
ture of what the computer viral hazard is and how it may evolve in the
future.

Section 3 considers open problems in virus propagation modeling tech-
niques. We review the mainstream literature works on this topic, and show
why new modeling techniques are needed to capture new trends in the
propagation of common viruses, mass-mailers, random scanning worms
of new conception, and we also briefly deal with various basic issues sur-
rounding propagation modeling.

Section 4 deals with proposed countermeasures: how can they be val-
idated before being implemented? Which new defensive techniques do we



need to counter new developments we foresee in the next generations of
aggressive malware?

Section 5 presents instead some practical and technical research areas
that could benefit from a theoretically sound scientifical approach which
is currently lacking.

Finally, in Section 6 we draw conclusive remarks on this review, and
outline the most interesting issues for future research in the area.

2 Open Problems in Theoretical Computer Virology

2.1 Theoretical Definitions of Viruses

Let us recall the different theoretical definitions for computer viruses that
have been proposed in previous research. It will help the reader to better
understand what follows.

– Cohen’s definition considers Turing machines [1]. The basic notion is
that of viral set.

Definition 1 (Viral set)
For all Turing machines M and all non-empty sets of Turing programs
V , the pair (M, V ) is a viral set, if and only if, for each virus v ∈ V ,
for all histories of the machine M , we have:
• For all time instants t ∈ N and cells j of M if

1. the tape head is in front of cell j at time instant t and
2. M is in its initial state at time instant t and
3. the tape cells starting at index j holds the virus v,
then, there exists a virus v′ ∈ V , at time instant t′ > t and at
index j′ such that
1. index j′ is far enough from v position (start location j),
2. the tape cells starting at index j′ hold the virus v′ and
3. at some time instant t′′ such that t < t′′ < t′, v′ is written by

M .
In an abridged way, we can write that V is a viral set with respect to
M , if and only if,

[(M,V ) ∈ V]

and that v is a virus with respect to M , if and only if,

[v ∈ V ] such that [(M, V ) ∈ V].

In this context, a “simple” virus can be described by a singleton viral
set.



– Adleman’s definition as well as Zuo and Zhou’s one relies on recursive
functions [2, 3] (we consider here the formalism adopted in [4] for the
purpose of homogeneity with the next definition).

Definition 2 (Adleman’s viruses) A total computable function A
is said to be an A-viral function (virus in the sense of Adleman) if for
each system environment (r, d), one of the three following properties
holds:
Injure

∀p, b ∈ D ϕA(p)(r, d) = ϕA(q)(r, d). (1)

This item corresponds to the execution of some viral functions in-
dependently from the infected program.

Infect

∀p ∈ D ϕA(p)(r, d) = 〈εA(r′1), . . . , εA(r′n), d′〉 (2)

where ϕp(r, d) = 〈r′, d′〉 and εA is a computable selection function
defined by

εA(p) =
{

p or
A(p)

The second item corresponds to the case of infection (any program
is potentially rewritten according to A; data are left unchanged).

Imitate

∀p ∈ D ϕA(p)(r, d) = ϕp(r, d). (3)

The last item corresponds to mimic the original program (stealth
purpose).

where D denotes the computation domain. The reader will note that
this definition is not constructive, as opposed to the next one.

– Bonfante, Kaczmarek and Marion [5, 4] describe viruses as fixed points
of a semi-computable function. They first consider the following defi-
nition:

Definition 3 Assume that B is a computable function. A virus with
respect to B is a program v such that for each p and x in the compu-
tation domain D,

ϕv(p, x) = ϕB(v,p)(x).

The function B is called the propagation function of the virus v.



Then, the authors proved the following result:

Theorem 1 Given a semi-computable function f , there is a virus v
such that for any p and x in D, we have

ϕv(p, x) = f(v, p, x).

Recursion Theorem provides a fixed point v of the semi-computable
function f . This fixed point v is a virus with respect to a propagation
function B(v, p).
One of the most interesting characteristics of this approach is that
such definitions and results are of constructive nature (in particular
the reader will consider [4, Section 4.6, Theorem 4]).

2.2 Complexity Theoretic Problems

Studying complexity aspects of viral sets is of high importance since it
quantifies the intractability of detection. Very few papers have been fo-
cused on the intractability of detection even if some major results have
been established. Fred Cohen [1] proved that the general problem of vi-
ral detection was undecidable. This result refers to computability as pre-
sented by Rogers [6]. Most of the results on viruses concern undecidability
and the hierarchies on the top of the Halting problem.

Later on, his Ph.D. tutor L. Adleman [2] gave complexity results on
some particular instances of the general detection problem:

– The set V = {i|Φi is a virus} is Π2-complete [2, p. 363].
– The infected set of a virus v defined as Iv = {i ∈ N|(∃j ∈ N[i = v(j)]}

is Σ1-complete [2, p. 371].

D. Spinellis proved in 2003 that detection of bounded-length polymorphic
viruses is a NP -complete problem [7]. When considering polymorphic
viruses of (possibly) unbounded length, how does the detection complex-
ity change? Such a question may appear only of theoretical interest,but
in fact k-ary viruses (see Section 2.3) can simulate this behavior. More
recently, a few additional results have been published:

– In 2004, Z. Zuo and M. Zhou [3] have exhibited viral sets that are
Σ1-complete, Π2-complete or Σ3-complete. Moreover, they also con-
sidered other viral sets that appear to be of even higher complexity.

– In 2005, G. Bonfante, M. Kaczmarek and J.-Y. Marion [4] gave other
similar results.



All these results refer to algorithmic complexity as considered in [8]. In
this context, research is focused on classes of low complexity where either
time or space are bounded.

Despite the fact that most of this theoretical results prove that the
related detection problems are intractable, in practice it remains essen-
tial to identify classes of viral codes that effectively challenge protection
policies. An interesting problem is to determine whether there exist viral
sets of Πn or Σn complexity (complete or not) for any given value of n.
From an intuitive point of view, the answer seems to be positive. Some
new examples of viral codes suggests it. To carry matters to extremes, one
could in fact consider indecidability as the infinite complexity (n →∞).

The answer to the previous problem in fact appeals to another prob-
lem: is it possible to classify viral codes according to the complexity class
of their viral sets? Up to now, viral classification has been established by
considering mathematical tools (Turing Machine [1], recursive functions
[2, 3], or fixed points of a semi-computable function [4, 9]; see Section 2.1).
Classifications based on complexity, rather than on mathematical prop-
erties, could produce a better perception of the viral risk and hence new
models for antiviral research. The classification according to detection
complexity should help to better identify classes of viruses for which de-
tection is of polynomial complexity. This approach was first suggested in
[4, Theorem 14].

Recently Z. Zuo and M. Zhou [10] presented new results on time com-
plexity of computer viruses (virus running time, virus detection proce-
dure). The authors pointed out some interesting open problems related
to the time complexity issue. Their main results are:

– For any type of computer viruses, there exists a computer virus v
whose infecting procedure has arbitrarily large time complexity.

– For any type of computer viruses, there is a virus v such that any
implementation of v can have arbitrarily large time complexity in its
infection procedure.

It is a well-known result [11] that there exists a computer virus v such
that its infected programs set Iv is undecidable. This can formally be
expressed by the fact that Iv is a non recursively enumerable set. Thus
detecting all the programs infected by v requires to find a recursive set C
such that Iv ⊂ C.

Considering the fact that existing computer viruses are almost always
decidable, the authors of [10] then considered two unsolved questions:

1. If Iv is decidable, what is its time complexity?



2. If Iv is undecidable, what is the time complexity of the recursive set
containing Iv?

They gave only a partial answer to the first question. They proved that
for any undecidable computer virus, there is one detecting procedure of
arbitrarily large complexity. As the authors noted in their article, in prac-
tice it is more desirable to consider the existence of a recursive set C such
that Iv ⊆ C and whose characteristic function has a “low-time” complex-
ity (polynomial). While this is trivial when C = N, it is still an open
problem to solve under the conditions that (N− C) is infinite and C is as
small as possible.

2.3 Viral and Antiviral Models Problems

Some recent viruses – found in the wild or studied as part of a prospective
protection strategy – exhibit new structures, properties and/or behaviors.
Most of the time, these viruses pose new threats that current antiviral
models cannot deal with. The reason is that these new viruses develop a
complex, sophisticated algorithmic that does not fit to the present viral
models. A good example are the so called k-ary viruses (sometimes de-
noted as combined viruses or viruses with “rendez-vous”). These viruses
combine their respective actions according to different modes of opera-
tion. A known example of a 2-ary virus is the combination of the W32.Qaz
virus with the W32.Funlove virus.

Despite the fact that their attack scheme was not very sophisticated
compared to what 2-ary viruses can theoretically do, this combination
illustrates a new face of tomorrow’s threats. In [9, pp. 135ff], a classifi-
cation of this type of viruses has been sketched. Some particular types
are exhaustively presented, from an algorithmic point of view, in [12].
However, a complete and exhaustive categorization of all types of k-ary
viruses and of their modes of combined action is still missing.

The difficulty of studying these particular viruses comes from the fact
that they do not comply with existing models of computer viruses. As
of now, computer virus models rely on the concept of “univariate” re-
cursive functions f : N → N. Unfortunately, these functions do not take
into account, among many other aspects, the time indexing which is an
inherent characteristics of k-ary viruses due to some of their modes of
operation (their respective action may occur with a different time refer-
ence or index). Multivariate vector recursive functions f : Nk → Nk could
be considered instead, in order to capture the concept of k-ary viruses.
Three questions arise:



– Is a model based on multivariate vector recursive functions the best
possible one for k-ary viruses? Considering the family of functions
(fi)1≤i≤k with fi : N → N could produce a more general and more
efficient model, being a third-order logic model.

– Will these models help to identify previously unforeseen classes of
viruses?

– What kind of corresponding antiviral models do we have to develop
and what are the new complexity issues with respect to them?

The next point deals with the classification of viral models themselves
and their respective relationship. Existing models (Cohen’s model based
on Turing machines, Adleman’s model based on recursive functions, and
Bonfante et al.’s model based on solutions of a fixed point equation) are all
second-order logic models, and have been proven to be largely equivalent.
Antiviral models that have been built from them are equivalent too, and
therefore are not different in their detection capabilities.

If we consider to create new viral models, let us call themM1,M2, . . . ,Mn,
we can ask ourselves:

– Do we have a logical chain for all of them, that is to say M1 ≺M2 ≺
. . .Mn ? In this context, each new modelMn+1 yields a generalization
of the antiviral models that have been derived from previous viral
models.

– On the contrary, do we have a lattice structure for the viral models ?
In this case, there exists a finite number of pairs of models that are not
comparable. In other words, for some pairsMi,Mj , neitherMi ≺Mj

nor Mj ≺ Mi. In this context, we have the same organization for
corresponding antiviral models. This implies a totally different, more
challenging, management of viral detection.

2.4 Classification and Identification Problems

The identification of new viral classes that may represent futuer threats
is essential. This identification is quite always reactive, since it relies on
code analysis. Another approach is to mathematically forecast new vi-
ral techniques or classes. As a representative example, Zuo and Zhou [3]
have proven that polymorphic viruses with infinite forms exist. But until
now, no such viruses have been created in the real world, excluding the
trivial polymorphic viruses, e.g. the padding function [13]. It remains an
open problem to determine whether this computability paradigm would
produce non-trivial polymorphic viruses when considering real programs.



Does Zuo and Zhou’s class of specific polymorphic viruses effectively rep-
resent a practical risk? This problem may sound very provocative (in fact
it would require us to write a virus), but only the proof-by-experience can
give a definitive answer.

As far as polymorphic and metamorphic viruses are concerned, the
classification of the mutation process is also an open problem. Detec-
tion is mostly based on heuristic techniques and their efficiency is regu-
larly defeated by new mutation techniques. Let us recall that detection
of bounded-length polymorphic viruses is a NP-complete problem [7]. In
order to improve detection of poly/metamorphic viruses a new approach
has to be found. Formally, Zou and Zhuo [3, 10] have defined (following
Adleman) polymorphic viruses as follows:

Definition 4 (Polymorphic virus with two forms) The pair (v, v′) of two
different total recursive functions v and v′ is called a polymorphic virus
with two forms if for all x, (v, v′) satisfies

φv(x)(d, p) =





D(d, p), if T (d, p)
φx(d, p[v′(S(p))]), if I(d, p)
φx(d, p), otherwise

and

φv′(x)(d, p) =





D(d, p), if T (d, p)
φx(d, p[v(S(p))]), if I(d, p)
φx(d, p), otherwise

Real-life polymorphic viruses are then described by the two authors
as a n-tuple (v1, v2, . . . , vn) of n different total recursive functions, under
similar condition as in Definition 4. Metamorphic viruses are defined in
much the same way, except that two selection functions S(p) and S′(p),
which choose a program p to infect, are used instead of only one for poly-
morphic viruses. With this formalism, only a set-theoretic, computability
approach is considered. In this context, this approach clearly relates to
Cohen’s formalism (concept of Largest Viral Set with respect to a Tur-
ing machine). The main drawback with the set approach comes from the
fact that relationships between the evolved forms do not appear very
clearly. On the contrary, polymorphism (and metamorphism) is generally
and practically implemented as an algorithm that iterates over the dif-
ferent mutated forms. The function may be very complex (like cellular
automata). In other words, polymorphism and metamorphism should be
described by a functional approach rather as a viral set containing the
different evolved forms of a given virus.



By considering the recursion theorem and the approach presented in
[9, Chap. 1] and developed in [5, 4], we can think of a virus as a fixed
point of the equation

ϕe(p, x) = f(e, p, x).

Then the functional description of polymorphism enables to see the i-th
evolution of a virus v as the result of total recursive function f , iterated
i times. In other words, we have now to consider the equation

ϕe(p, x) = f i(e, p, x).

Such a modeling opens interesting and unreseolved problems, whose solu-
tion could provide a significant improvement in polymorphism detection:

– Is it possible to find some mathematical properties for the function f
which could help to precisely characterize what polymorphism really
is and to classify functions realizing code polymorphism (see [Remark
17]bkm)? We could imagine, as an example, some distance d between
f i−1(e, p, x) and f i(e, p, x) which could reveal interesting invariant or
probabilistically invariant properties. A first idea suggests to describe
things in terms of function orbit and to focus on orbit properties.

– From a practical point of view, each evolved form of a virus can be
described as a binary sequence vi, that is to say as a codeword of
length L where L is the size of each evolved form. Without loss of
generality, we can consider code mutation to be size-invariant, since
generalization to code size variation is straightforward. Then, the set
of all mutated forms can be described as a code of length L (see [14]).
Then:
• What is the code cardinality? This relates to the number of possi-

ble evolved forms. Obviously, the code cardinality is upper-bounded
by 2L, but since any codeword of length L does not systematically
represent a viable form from an execution point of view, the car-
dinality of the code is bound to be strictly less that 2L.

• What is the code minimal distance? What is the average Hamming
distance between two codewords (evolved forms) of a virus?

• How mathematical tools of coding theory could be used and ap-
plied to help in mutation process characterization and detection?

– Considering the last point of the preceding item, we could for example
use tools taken from signal processing (when considering a virus as a
binary sequence or an octal sequence): the discrete cross-correlation
function to measure similarity (at least from a probabilistic point of



view) between to evolved forms. Knowing a given viral form, cross-
correlation would probably help to find evolving features in an un-
known (probably evolved) viral sequence. Autocorrelation function [9,
Chap. 8, Exercises] is a noteworthy tool which can help detect some
similarities inside a code and thus reveal some repetitive (dummy)
code insertion for polymorphic purposes. Many discrete transforms
commonly used in signal processing and coding theory should be con-
sidered as well to study and reveal mathematical properties of the
iterated function describing a mutation process.

Another interesting problem deals with the impact of quantum com-
puting [15] on computer virology. With quantum computing many re-
search fields have made essential progress. The best example is probably
cryptography where problems of intractable complexity (for traditional
computers) can be solved very easily by means of a quantum computer
[16, 17] The problem is two-fold:

– Considering intractable viral detection problems, what would be the
impact of quantum computing? Is it possible to imagine quantum viral
detection algorithms (“quantum antivirus”)?

– Considering quantum computers, what would then be a quantum com-
puter virus? Consequently, what would be the effect of such a virus
in terms of detection capabilities, when processed by a quantum an-
tivirus?

3 Open Problems in Virus Propagation Modeling
Techniques

3.1 Need and requirements for propagation models

Creating reliable models of virus and worm propagation is beneficial for
many reasons. First, it allows researchers to better understand the threat
posed by new attack vector and new propagation techniques. For instance,
the use of conceptual models of worm propagation allowed researchers to
predict the behavior of future malware, and later to verify that their
predictions were substantially correct [18].

In second place, using such models, researchers can develop and test
new and improved models for containment and disinfection of viruses
without resorting to risky “in vitro” experimentation of zoo virus release
and cleanup on testbed networks [19].

Finally, if these models are combined with good load modeling tech-
niques such as the queueing networks, we can use them to predict failures



of the global network infrastructure when exposed to worm attacks. More-
over, we can individuate and describe characteristic symptoms of worm
activity, and use them as an early detection mechanism.

In order to be useful, however, such a model must exhibit some well-
known characteristics: it must be accurate in its predictions and it must
be as general as possible, while remaining as simple and as low-cost as
possible. The importance of this work, and the shortcomings of many
existing models, are described in [20].

3.2 Open questions in modeling traditional viruses

Viral code propagation vectors have evolved over the years, and propa-
gation models also have evolved to keep pace. In the beginning of the
virus era, viruses infected host programs, and the most common vector of
propagation was the exchange of files via magnetic supports. The same
concept, in more recent times, has been extended to macro languages
embedded in office automation suites, generating the so-called “macro
viruses”.

The first complete application of mathematical models to computer
virus propagation appeared in [21]. The basic intuitions of this work still
provide the fundamental assumptions of most computer epidemiological
models. Epidemiological models abstract from the individuals, and con-
sider them units of a population. Each unit can only belong to a limited
number of states (Table 1 reports a widely accepted nomenclature): usu-
ally, the name of a model explicits the chain , e.g., a model where the
Susceptible population becomes Infected, and then Recovers, is called a
SIR model.

Another typical simplification consists in avoiding a detailed analysis
of virus transmission mechanics, translating them into a probability that
an individual will infect another individual (with some parameters). In a
similar way, transitions between other states of the model are described
by simple probabilities. Such probabilities could be calculated directly by
the details of the infection mechanism or, more likely, they can be inferred
by fitting the model to actual propagation data. An excellent analysis of
mathematics for infectious diseases in the biological world is available in
[22].

Most epidemiological models, however, share two important shortcom-
ings: they are homogeneous, i.e. an infected individual is equally likely to
infect any other individual; and they are symmetric, which means that
there is no privileged direction of transmission of the virus. The former
makes these models inappropriate for illnesses that require a non-casual



M Passive immunity
S Susceptible state
E Exposed to infection
I Infective
R Recovered

Table 1. Typical states for an epidemiological model

contact for transmission; the latter constitutes a problem, for instance, in
the case of sexually-transmitted diseases.

In the case of computer viruses both problems are often present. Most
individuals exchange programs and documents (by means of e-mails or
diskettes) in almost closed groups, and thus an homogeneous model may
not be appropriate. Furthermore, there are also “sources” of informa-
tion and programs (e.g. computer dealers and software distributors) and
“sinks” (final users): that makes asymmetry a key factor of data exchange.

In [21] both of these shortcomings are addressed by transferring a
traditional SIS model onto a directed random graph, and the important
effects of the topology of the graph on propagation speed are analyzed.
The authors describe the behavior of virus infections on sparse and local
graphs. In a sparse graph, each node has a small, constant average de-
gree; on the contrary, in a local graph, the probability of having a vertex
between nodes B and C is significantly higher if both have a vertex con-
nected to the same node A. The authors discuss that in the landscape
of the beginnings of the 90s the latter situation approximated very well
the interaction between computer users. Among other results, it is shown
that the more sparse a graph is, the slower is the spread of an infection
on it; and the higher is the probability that an epidemic condition does
not occur at all, which means that sparseness helps in containing global
virus spread (while local spread is unhindered). Further elaborations on
this type of model can be found in [23].

These findings are useful and interesting. However, it must be noted
that often a SIR model, in which a “cured” system is not susceptible
any more, could approximate better the behavior of many real cases of
propagation when a patch or antivirus signature is available. Also, the
introduction of the Internet as a convenient and immediate way for soft-
ware and data exchange has arguably made the assumptions of locality
and sparseness of the graph no longer valid.



3.3 Open questions in modeling mass-mailers

With the widespread adoption of the Internet, mass-mailing worms began
to appear. The damage caused by Melissa virus in 1999, Love Letter in
2000 and Sircam in 2001 demonstrated that tricking users into executing
the worm code attached to an e-mail, or exploiting a vulnerability in a
common e-mail client to automatically launch it, is a successful way to
propagate viral code.

In a technical report [24] Zou et al. describe a model of e-mail worm
propagation. The authors model the Internet e-mail service as an undi-
rected graph of relationships between people. In order to build a simu-
lation of this graph, they assume that each node degree is distributed
on a power-law probability function, an assumption drawn by the anal-
ysis of distribution of discussion group sizes, which result to be heavy-
tailed: since adding a group to the address book adds an edge towards all
components of the group, the distribution of node degree results heavy
tailed too. Nowadays, discussion groups proactively filter attachments, so
this assumption is challenged. Additionally, the authors employ a “small
world” network topology, which seems to ignore completely the existence
of interest groups and organizations, which naturally create clusters of
densely connected vertexes. All these simplifications should be addressed
in creating a good model of mass mailer propagation.

Furthermore, the authors assume that each user “opens” an incom-
ing virus attachment with a fixed probability, different for each user but
constant in time. This does not describe very well the typical behavior of
users. Indeed, most experienced users avoid virus attachments altogether,
while unexperienced users open them easily, at least the first time.

Additionally, it is observed that since user e-mail checking time is
much larger than the average e-mail transmission time, the latter can be
disregarded in the model. Since the overall spread rate of viruses gets
higher as the variability of users’ e-mail checking times increases, reliable
statistics describing this process should be used in order to build better
models of mass-mailer propagation.

Finally, when trying to determine the volume of messages generated
by a mass mailer the fact that, in most cases, e-mail viruses install them-
selves as startup services on the system, and spread themselves at each
opportunity, should be taken into account and properly modeled.



3.4 Open questions in modeling scanning worms

The concept of a self-contained, self-propagating program which does not
require an host program to be carried around, was also developed early,
but was somehow neglected for a long time. In 1988, however, the Internet
Worm [25] changed the landscape of the threats. The Internet Worm was
the first successful example of a self-propagating program which did not
infect host files, but was self contained. Moreover, it was the first really
successful example of an active network worm, which propagated on the
Internet by using well-known vulnerabilities of the UNIX operating sys-
tem. Other worms used open network shares, or exploited vulnerabilities
in operating systems and server software to propagate.

The Random Constant Spread (RCS) model [18] was developed by
Staniford, Paxson and Weaver using empirical data derived from the out-
break of the Code Red worm, a typical random scanning worm which
propagates by using the .ida vulnerability discovered by eEye itself on
June 18th 2001 [26], thus infecting vulnerable web servers running Mi-
crosoft IIS version 4.0 and 5.0. When Code Red infects an host, it spreads
by launching 99 threads, which randomly generate IP addresses (exclud-
ing subnets 127.0.0.0/8, loopback, and 224.0.0.0/8, multicast) and try to
compromise the hosts at those addresses using the same vulnerability.

A particularity of this worm is that it does not reside on the file
system of the target machine, but it is carried over the network as the
shellcode of the buffer overflow attack [27] it uses. When it infects an host,
it resides only in memory: thus a simple reboot eliminates the worm, but
does not avoid reinfection. Applying a patch to fix the IIS server or using
temporary workarounds (e.g. activating a firewall, or shutting down the
web server) makes instead the machine completely invulnerable to the
infection. Thus, in order to model completely the worm we would need a
SIR model where from I state we can either go to S or R state.

However, the RCS model makes a big approximation: it ignores that
systems can be patched, powered and shut down, deployed or discon-
nected. In other words it is a simple SI model, with no recovery or im-
munization processes. This is only partially reasonable and justified by
the speed of the worm propagation: in other words, the authors implicitly
assume that the worm will peak before a remedy begins to be deployed.

An additional, more crucial approximation, is that the Internet topol-
ogy is considered an undirected complete graph. In truth, the Internet
being (as S. Breidbart defined it) “the largest equivalence class in the
reflexive, transitive, symmetric closure of the relationship can be reached
by an IP packet from”, it is all but completely connected. In fact, re-



cent researches [28] show that as much as the 5% of the routed (and
used) address space is not reachable by various portions of the network,
due to misconfiguration, aggressive filtering, or even commercial disputes
between carriers.

Let N be the total number of vulnerable servers which can be poten-
tially compromised from the Internet. Let K be the average compromise
rate, i.e. the number of vulnerable hosts that an infected host can com-
promise on average per unit of time at the beginning of the outbreak. K
averages out any difference in processor speed, network bandwidth and
location of the infected host. The model also assumes that a machine
cannot be compromised multiple times and that, being 232 a very large
address space, the chance that two different instances of the worm simul-
taneously try to infect a single target is negligible. If a(t) is the proportion
of vulnerable machines which have been compromised at the instant t, the
RCS model is described by the simple differential equation:

da

dt
= Ka(1− a) (4)

The solution of this equation is the well-known logistic curve. In [18]
the authors fit their model to the “scan rate”, or the total number of
scans seen at a single site, instead than using the number of distinct
attacker IP addresses, because this latter variable is distorted by time
skew, unless the outbreak is observed from a very large address space, a
concept known as a “network telescope” [29]. Researchers from CAIDA
used data from such a telescope to describe the Code Red outbreak [30].
A total of about 359.000 hosts were infected by CRv2 in about 14 hours
of activity. The worm was peaking when the self-deactivation mechanism
it contained shut it down.

However, when we deal with UDP-based worms such as Slammer
(which propagates by exploiting a buffer overflow vulnerability in Mi-
crosoft SQL Server) a radical change happens. Slammer had a doubling
time of 8.5(±1) seconds, while Code Red had a doubling time of about
37 minutes. Slammer infected more than 90 percent of vulnerable hosts
within the first 10 minutes. This is caused by the fact that TCP based
worms have to establish a connection before actually exploiting the vul-
nerability: having to wait for answers, they are latency limited. UDP based
worm, on the contrary, scan at the full speed allowed by the network
bandwidth available, so they are bandwidth limited.

Slammer’s spreading strategy is based on random scanning, similarly
to Code Red. Thus, the RCS model should fit its growth, but it fails after



a while. A common explanation for this failure is that the model does
not take into due account bandwidth limitations on the global network:
in other words, the failure and overload of links during worm propagation
make the “global reachability” assumption less and less realistic as time
goes on.

In [31] the RCS model was extended, creating a compartment-based
model, in order to take into account the existence of bottleneck Inter-
net links. The propagation equation becomes thus a system of nonlinear
differential equations:
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where we denote with Ni the number of susceptible hosts in the i-th
compartment (ASi), with ai the proportion of infected hosts in the same
compartment. We also suppose, for simplicity, that the average propaga-
tion speed K is constant in each compartment. Qi, 0 < Qi ≤ 1 is the
fraction of attack packets that actually can get through the link of the
i-th compartment, and is a rough approximation of the bottleneck effect
of the Internet links. Numerical simulations of the equation and its effects
on the global growth of the worm and on the observation of the growth
from a telescope are also presented.

This model is derived for a set of compartments with a single connec-
tion to the rest of the world, which is only partially realistic. A model
for multi-homed compartments that are not just leaves, but that forward
traffic following realistic Internet policies would be desirable.

Zou et al. [32] propose a different approach for modeling slow worms
such as Code Red incorporating the Kermack-Mckendrick model for host
disinfection into the RCS equations. Additionally, the authors propose
that the infection rate K should be considered a function of time, be-
cause of intervening network saturation and router collapse. Basically
they rewrite the model as:

da

dt
= K(t) a (1− a− q − r)− dr

dt
(6)

where q(t) is the proportion of susceptible hosts that are immunized at
time t, and r(t) is the proportion of infected hosts that are cured and im-
munized at time t. This model is thus called the two-factor worm model. In
order to complete the model, the authors make some debatable assump-
tions on q(t) and r(t). In particular (similarly to the kill signal theory



described in [33]), the patching process is modeled as a “counter-worm”:

dq

dt
= µ(1− a− q − r)(a + r)

This equation is somehow arbitrary, and further analysis on the two-
factor model is needed before it can be considered a sound model of viral
propagation.

3.5 Other open questions in propagation modeling

Some authors [34] have explored discrete time models, in the hope to bet-
ter capture the discrete time behavior of a worm. However, a continuous
model is appropriate for such large scale models, and the epidemiolog-
ical literature is clear in this direction. The benefits of using a discrete
time model seem very limited, but this is difficult to say since the base
assumptions of this particular model are not completely correct. More
exploration of the usage of discrete time models could lead to interesting
results.

It is important to note that modern viruses often use a mix of dif-
ferent techniques to spread (for instance, Sircam uses both mass mailing
and open network shares, while Nimda uses four different mechanisms
to propagate). We are not aware, however, of any existing model which
takes into account multi-vector viruses and worms.

4 Open problems in antiviral countermeasures

4.1 Monitoring and early warning

In current infrastructure where worms are able to achieve quick penetra-
tion it is essential to research and develop methods for prevention that
will prevent attacks as early as possible. For example, Ibrahim and al.
[35] demonstrate this approach by proactive email worm prevention.

Because of the effects of distortion described in Section 3.4, in [36] the
models of active worm propagation are used to build an early monitoring
and alerting system for TCP or UDP based worms, based on distributed
ingress and egress sensors for worm activity. A data collection engine
based on a Kalman filter is used to create an alerting system, capable
of reliably setting off alarms as early as when the proportion of infected
system is 1% ≤ a ≤ 2%. It is also shown that this early warning method
works well also with fast spreading worms, and even if an hit-list startup
strategy is used.



However, we need more research in areas of proactive prevention. In
general interesting areas could be network forensics, detecting infected
host systems and preventing malicious operations from infected hosts.

4.2 Virus resistant infrastructures

If we develop further the concept of proactive prevention we may end up in
research that will promote prevention as an inherent part of infrastructure
design. We may find examples of such attempts from the development
of IPv6 (Internet Protocol version 6), processor architecture design and
buffer overflow [37] prevention techniques. However, we still need more
holistic approaches. For example, security can be an inherent part of
computer architecture and network architecture design [38]. Interesting
questions may arise from construction of virus resistant and self-defending
architectures.

4.3 Integrity verification

Viruses are a violation against system integrity. Unfortunately, in current
systems integrity is difficult to verify and operating environments seldom
support systematic integrity verification. There are solutions for system
integrity verification, but integrity verification is not typically adapted as
an inherent part of system design.

Radai established theory of integrity verification related to computer
virology [39, 40]. Furthermore, Bontchev presented some methods viruses
can use to attack integrity checking programs and how the attacks could
be prevented [41]. More recently, Filiol [9, Chap. 8] technically demon-
strated how integrity checking can be bypassed. One interesting question
could be: how to adapt integrity verification as securely as possible against
malware attacks? For example, new information system architectures may
be needed to support integrity verification.

4.4 Effects of Quarantine

Quarantine is the world’s oldest defense against viruses. In [42] a dynamic
preventive quarantine system is proposed, which places suspiciously be-
having hosts under quarantine for a fixed interval of time. Models and sim-
ulation of a quarantine system are proposed, however such a system would
be difficult to deploy. Since hosts cannot be trusted to auto-quarantine
themselves, on most networks quarantine would act on remotely manage-
able enforcement points (i.e. firewalls and intelligent network switches).



Since these components are limited, entire blocks of network would need
to be isolated at once, increasing the probability that innocent hosts will
be denied service as a side effect of the quarantine system.

In addition, as shown in [31], virus spread is not stopped but only
slowed down inside each quarantined block. Moreover, it should be con-
sidered that the “kill signal” effect (i.e. the distribution of anti-virus signa-
tures and patches) would be hampered by aggressive quarantine policies
(something which is not taken into account in the modified Kerman-
McKendrick models presented in [42]).

In [43] various containment strategies (content filtering and blacklist-
ing) are simulated, deriving lower and upper bounds of efficacy. Albeit
interesting, the results on blacklisting share the same weakness pointed
out before: it’s not realistic to think about a global blacklisting engine,
enforced at network level.

More research on practical quarantining systems are needed in order
to bring these approaches into real-world use. On a LAN, an intelligent
network switch could be used to selectively shut down the ports of in-
fected hosts, or to cut off an entire sensitive segment. Network firewalls
and perimeter routers can be used to shut down the affected services. Re-
active IDSs (the so-called “intrusion prevention systems”) can be used to
selectively kill worm connections based on attack signatures. Automatic
reaction policies, however, are intrinsically dangerous. False positives and
the possibility of fooling a prevention system into activating a denial-of-
service are dangerous enough to make most network administrators wary.

4.5 Immunization

In [33] the effect of selective immunization of computers on a network
is discussed. The dynamics of infection and the choice of immunization
targets are examined for two network topologies: a hierarchical, tree-like
topology (which is obviously not realistic for modeling the Internet), and
a cluster topology. The results are interesting, but the exact meaning of
“node immunization” is not defined. While such a study could be used to
prioritize the process of patching on a widespread network, unless some
new ideas for virus prevention are proposed, the practical possibilities of
application for such a model seem extremely limited.

4.6 Honeypots and tarpits

Honeypots are fake computer system and networks, used as a decoy to
cheat intruders. They are installed on dedicated machines, and left as a



bait so that aggressors will lose time attacking them and trigger an alert.
Since honeypots are not used for any production purpose, any request
directed to the honeypot is at least suspect. Honeypots can be made up
of real sacrificial systems, or of simulated hosts and services (created using
Honeyd by Niels Provos, for example).

A honeypot could be used to detect the aggressive pattern of a worm
through anomaly detection: since honeypots are empty of true users, any
non-simulated traffic hitting them is suspicious. Repeated connections to-
wards the same ports of the honeypot machines are a good indicator of
a scanning worm at work. The honeypot can thus be used as an alert-
ing system. Also, once a worm has entered a honeypot, its payload and
replication behaviors can be easily studied, provided that an honeywall is
used to quarantine the sacrificial hosts making them unable to actually
attack the real hosts outside.

As an additional possibility, an honeypot can be used to slow down
worm propagation, particularly in the case of TCP-based worms. By de-
laying the answers to the worm connections, a honeypot may be able to
slow down its propagation; very much the same technique used in the
LaBrea “tarpit” tool, which replies to any connection incoming on an
unused IP address of a network, and simulates a TCP session with the
possible aggressor. LaBrea slows down the connection: when data trans-
fer begins, the TCP window size is set to zero, so that no data can be
transferred. The connection is kept open, and any request to close the
connection is ignored. This means that the worm will have to wait for a
timeout in order to disconnect, since it uses the standard TCP stack of the
host machine which follows RFC standards. A worm won’t be able to de-
tect this slowdown, and if enough fake targets are present, its growth will
be slowed down. Obviously, a multi-threaded worm will be less affected
by this technique. This effect should be properly studied and modeled to
evaluate its effectiveness.

4.7 Counterattacks and good worms

Counterattack may seem a viable cure to worms. When host A sees an
incoming worm attack from host B, it knows that host B must be vul-
nerable to the particular exploit that the worm uses to propagate (unless
the worm itself removed that vulnerability as a result of infection). By
using the same type of exploit, host A can automatically take control of
host B and try to cure it from infection and patch it.

The first important thing to note is that, fascinating as the concept
may seem, this is not legal, unless host B is under the control of the same



administrator of host A. Additionally, automatically patching a remote
host is always a dangerous thing, which can cause considerable unintended
damage (e.g. breaking services and applications that rely on the patched
component).

Another solution which in past proved to be worse than the illness is
the release of a so-called “good” or “healing” worm, which automatically
propagates in the same way the bad worm does, but carries a payload
which patches the vulnerability. A good example of just how dangerous
such things may be is the Welchia worm, which was meant to be a cure
for Blaster, but actually caused devastating harm to the networks. Such
proposals must be carefully evaluated, as was done in [44]

5 Technical and practical research areas in computer
virology

Antivirus software evaluation It is very difficult to accurately eval-
uate the quality and the limitations inherent to the different antiviral
products available today. Users can only compare marketing claims of
each vendor, without any real information about the detection and disin-
fection power and efficiency. Notoriety, or market share, could be taken as
an indicator. The raw percentage of viruses/malware that are effectively
detected and efficiently disinfected can also be considered. But a little
experience in antiviral software quickly shows that this approach is quite
sterile.

The problem of having precise and efficient technical evaluation tools,
and a clear methodology to use them, is of the highest importance. This
problem must be considered in connection with a crucial property express-
ing the complexity virus writers must face to obtain technical information
about the antivirus during a “black box analysis” process. The analysis
of viral databases is probably the best example.

Malware taxonomy and phylogeny As we have seen multiple times,
recursive self-replication is the fundamental characteristic of a virus. How-
ever, when we go beyond that it becomes difficult to classify malware.
Even a definition for the term “computer worm” has not been agreed on.
For example, if we define that a virus must infect a host and a worm is
self-contained, the meaning of “host” must be discussed. When we reach
terms like “Trojan horse” and “spyware” the precise definitions is even
more difficult. At least, the following reasons can be found:



1. Malicious intentions are difficult (and sometimes impossible) to pre-
dict by analyzing program code.

2. A program may be used maliciously even when it is designed for ben-
eficial purposes, and vice-versa.

3. There exist a number of “gray areas” where it is impossible to say
whether a program belongs to a certain category or not.

Despite the difficulties in defining malware, research on objective def-
initions and criteria for classification is needed. Brunnstein proposes an
interesting classification scheme based on software disfunctions [45]. How-
ever, we also need practical definitions. In general interesting questions
could be: what are different malware categories and sub-categories? What
are the functionalities for a certain program category? What are the pre-
cise definitions? How to prove that a program code belongs to a certain
category?

Even the naming convention of malware is still an open problem,
perhaps one of the most crucial problems in modern computer virology.
Unfortunately nobody proved that this is not an “undecidable problem”.
It is a matter of fact, however, that every antivirus company develops
its own naming convention, ignoring the other ones. Very frequently, all
these naming conventions appear to be at least partially incompatible,
but unless a sound and rational classification base is developed, nobody
will accept to give up. Recent developments [46, 47] have shown that phy-
logeny models – i.e. taking into account the fact that programs may be
evolved through code rearrangements or that viruses are rarely written
from scratch and are mostly derived from known previous codes – is likely
to produce the desired tools for a unified naming convention. But many
problems still exist. The authors of [47] focused on permutations of code.
They have identified some questions that are still to be solved. More-
over, they only consider sequence-based phylogeny models. Would it be
possible to extend their approach to function-based phylogeny?

5.1 Malware in smart phones

Even a modest cellular phone includes software that controls the phones
operations. Meanwhile phones are getting more and more properties of
computers: connectivity, applications and calculation power. Although
in Symbian smart phone operating system security is part of the de-
sign vulnerabilities may still remain. Niemelä presents technical aspects
of Symbian from the malware point of view [48] and Reynaud-Plantey
[49] recently analyzed some new aspects of the viral risk with respect to



the Java language. MMS (Multimedia Messaging System), Bluetooth and
vulnerabilities enable existence of viruses.

Research in computer virology is so far occasional in the area of smart
phones. Still smart phones bring special aspects to research: mobility, cost
of services and fixed wireless connections.

6 Conclusions

We have proposed some of the most interesting open research problems
and areas in computer virology, with an emphasis on theoretical aspects.
To begin, we focused on theoretical computer virology, presenting the
core results already developed in literature, and the problems that are still
waiting a solution. In particular, complexity problems, virus classification
and new classes of viruses still need much research.

Virus propagation modeling techniques als need improvement in or-
der to capture new trends in the propagation of common viruses, mass-
mailers and random scanning worms. Proposed countermeasures are also
described, along with open questions: how can they be validated before
being implemented? Which new defensive techniques do we need against
the next generations of aggressive malware?

Finally, we presented practical and technical research areas, to com-
plete our review of open research issues: we focused on those problems
that, in our view, could benefit from a more theoretically sound approach.

Of course, we have not addressed all open problems. For instance,
there are interesting issues concerning programming languages, their se-
mantics and computer viruses. We could wonder whether it is possible
to develop a high-level programming language compiler which guarantees
that no attacks can be performed. This type of questions is generally ad-
dressed in computer safety research, but will likely be deeply interesting
in defeating computer malware.

In conclusion, since the research domain in computer virology is a
new one, we can expect fundamental research outcomes to be found in
the next few years, and to deeply influence the future of computer security
technologies for virus defense.
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