
Spiffy:
Automated
JavaScript Deobfuscation

Alex Rice
Sr. Security Researcher

Stephan Chenette
Principle Security Researcher

Malcode analysis

 Current malcode research is focused on binary analysis.

 Multiple tools to assist researchers in analysis.
 IDA
 OllyDbg

 Fact: More delivery of malware is moving to the web.

 A new set of skills and tools are required.

What you know…
What you need to know…
 Malicious binary analysis

 Languages: Assembly, C, C++, vb, delphi, etc.
 Concepts: PE file format, win32 function usage, unpacking, anti-

disassembling tricks, etc.
 Tools: IDA, OllyDbg, PEiD, Imprec

 Malicious web content analysis
 Languages: (D)HTML, VBScript, JavaScript, Perl/Python/Ruby
 Concepts: HTTP Protocol, XMLHTTPRequest, Document Object

Model (DOM), Browser Security Models, JSON,
 Tools: ???

Those Who Forget History Are
Doomed to Repeat It
 Malcode authors will protect malicious web content the

same way they protected malicious binaries.

 Signature evasion
 Anti-analysis techniques
 Pain in the #*&#$! for all researchers!!

Unpacking and anti-debugging

 Packing/Protecting/Anti-reversing
 Compression, Encryption, CRC protection
 Anti-debugging
 Virtualization detection
 Anti-emulation
 XOR stubs

Obfuscation Evolution

 String splitting:
 “AD” + “ODB.S” + “treAM”

 String encoding/escaping:
 “%41\u0044” + “O\x44%42\u002ES” + “t%72eAM”

 Closing html tags (e.g. </TEXTAREA>)
 Code length dependant obfuscation:

 arguments.callee.toString()
 Server-side [poly|meta]-morphic obfuscation

Malicious JavaScript

What we actually see…

Our Approach

 Emulation: a browser without a browser…
 HTML Parser
 DOM Implementation
 Scripting Engine(s)/Interpreter(s)

 Allow the page to decode itself
 Don’t render content, just log everything!

HTML Parser

 The first step in emulating a browser: HTML.

 Retrieve all the content needed by the page:
external SCRIPTs, IFRAMEs, etc.

 Side effect – basic HTML obfuscation is defeated:
 <iframe src=“http

://%77%77%77%2E%74….

A Little DOM, Please

 Modern browsers are dynamic, so our emulator
must also be.

 Implement Document Object Model

 Attempting to detect all instances of an element by
simply parsing static HTML is not enough….
 createElement(‘IFRAME’);

Coming At You Like A Spider Monkey

 Integrate scripting engine(s) with our DOM to
execute scripts as they are discovered

 Scripts are [mostly] safe for execution

 Firefox’s SpiderMonkey JavaScript Engine
(MPL/GPL/LGPL)

The Missing Pieces

 Implement all of the objects/functions that the
browser provides:

 Few internal tweaks to mimic JScript (IE)
 e.g., arguments.callee.toString()

Native JavaScript Browser Supplied

eval() alert()

String.fromCharCode() document.write()

escape() location.href

Math.random() window.status

Automated Usage

 Integrated with our miners
 Lots and lots of tuning … (Dec ’06)

 100,000,000+ URLs analyzed every 24 hrs

 Even after the initial decoding, string matching is still
futile: “AD” + “ODB.S” + “treAM”

New Technique, New Signatures

 Detect specific DOM element + attribute combinations

1. New <OBJECT> created

2. <OBJECT>.classid = “BD96C556-65A3….”

3. <OBJECT>.CreateObject(“adodb.stream”)

 Can still match “old fashion” signatures *inside*
document.write() and eval() calls

24 Hours – 111M URLs
124,232 Infected (0.11%)

Limitations – JavaScript Only?

 Other Languages?
 Same concepts apply!

 VBScript
 vbscript.dll under WinE!
 Currently working on experimental version

 ActionScript
 Partially implemented when Adobe open sourced

the engine; now part of Mozilla’s Tamarin Project

Limitations – variable is not defined!

 Attackers can potentially use intentional errors to
prevent code execution

 Identical input/output is very important
 Easy: document.width
 Hard: window.open()
 Really hard: XMLHTTPRequest
 Centralized verbose error logging!

Limitations – Denial of Service

 JS_SetBranchCallback
 Look familiar?

 Separate thread monitoring execution time

Limitations – User Interaction

 Malicious code could potentially rely upon a user’s
action before execution begins

 We implemented some basic event handling:
 body – onload
 window – focus
 document – onmouse___

 Not foolproof!

CaffeineMonkey

 Ben Feinstein & Daniel Peck @ SecureWorks
 Released Open Source
 Excellent tool for manual reverse engineering of

obfuscation; needs HTML/DOM!
 Promising research that attempts to identify malicious

activity based on behavior, not static signatures.
 http://secureworks.com/research/tools/caffeinemonkey.html

Other Resources

 Tutorials from ISC, excellent starting point
 http://handlers.sans.org/dwesemann/decode/

 Jose Nazario’s CanSecWest presentation
 http://www.cansecwest.com/slides07/csw07-nazario.pdf

 Websense Blogs
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=86
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=98
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=142

http://handlers.sans.org/dwesemann/decode/
http://www.cansecwest.com/slides07/csw07-nazario.pdf
http://www.websense.com/securitylabs/blog/blog.php?BlogID=86
http://www.websense.com/securitylabs/blog/blog.php?BlogID=98
http://www.websense.com/securitylabs/blog/blog.php?BlogID=142

Stephan Chenette
Principle Security Researcher

schenette || websense com

Alex Rice
Sr .Security Researcher

arice || websense com

The End

