
Spiffy:
Automated
JavaScript Deobfuscation

Alex Rice
Sr. Security Researcher

Stephan Chenette
Principle Security Researcher

Malcode analysis

 Current malcode research is focused on binary analysis.

 Multiple tools to assist researchers in analysis.
 IDA
 OllyDbg

 Fact: More delivery of malware is moving to the web.

 A new set of skills and tools are required.

What you know…
What you need to know…
 Malicious binary analysis

 Languages: Assembly, C, C++, vb, delphi, etc.
 Concepts: PE file format, win32 function usage, unpacking, anti-

disassembling tricks, etc.
 Tools: IDA, OllyDbg, PEiD, Imprec

 Malicious web content analysis
 Languages: (D)HTML, VBScript, JavaScript, Perl/Python/Ruby
 Concepts: HTTP Protocol, XMLHTTPRequest, Document Object

Model (DOM), Browser Security Models, JSON,
 Tools: ???

Those Who Forget History Are
Doomed to Repeat It
 Malcode authors will protect malicious web content the

same way they protected malicious binaries.

 Signature evasion
 Anti-analysis techniques
 Pain in the #*&#$! for all researchers!!

Unpacking and anti-debugging

 Packing/Protecting/Anti-reversing
 Compression, Encryption, CRC protection
 Anti-debugging
 Virtualization detection
 Anti-emulation
 XOR stubs

Obfuscation Evolution

 String splitting:
 “AD” + “ODB.S” + “treAM”

 String encoding/escaping:
 “%41\u0044” + “O\x44%42\u002ES” + “t%72eAM”

 Closing html tags (e.g. </TEXTAREA>)
 Code length dependant obfuscation:

 arguments.callee.toString()
 Server-side [poly|meta]-morphic obfuscation

Malicious JavaScript

What we actually see…

Our Approach

 Emulation: a browser without a browser…
 HTML Parser
 DOM Implementation
 Scripting Engine(s)/Interpreter(s)

 Allow the page to decode itself
 Don’t render content, just log everything!

HTML Parser

 The first step in emulating a browser: HTML.

 Retrieve all the content needed by the page:
external SCRIPTs, IFRAMEs, etc.

 Side effect – basic HTML obfuscation is defeated:
 <iframe src=“http

://%77%77%77%2E%74….

A Little DOM, Please

 Modern browsers are dynamic, so our emulator
must also be.

 Implement Document Object Model

 Attempting to detect all instances of an element by
simply parsing static HTML is not enough….
 createElement(‘IFRAME’);

Coming At You Like A Spider Monkey

 Integrate scripting engine(s) with our DOM to
execute scripts as they are discovered

 Scripts are [mostly] safe for execution

 Firefox’s SpiderMonkey JavaScript Engine
(MPL/GPL/LGPL)

The Missing Pieces

 Implement all of the objects/functions that the
browser provides:

 Few internal tweaks to mimic JScript (IE)
 e.g., arguments.callee.toString()

Native JavaScript Browser Supplied

eval() alert()

String.fromCharCode() document.write()

escape() location.href

Math.random() window.status

Automated Usage

 Integrated with our miners
 Lots and lots of tuning … (Dec ’06)

 100,000,000+ URLs analyzed every 24 hrs

 Even after the initial decoding, string matching is still
futile: “AD” + “ODB.S” + “treAM”

New Technique, New Signatures

 Detect specific DOM element + attribute combinations

1. New <OBJECT> created

2. <OBJECT>.classid = “BD96C556-65A3….”

3. <OBJECT>.CreateObject(“adodb.stream”)

 Can still match “old fashion” signatures *inside*
document.write() and eval() calls

24 Hours – 111M URLs
124,232 Infected (0.11%)

Limitations – JavaScript Only?

 Other Languages?
 Same concepts apply!

 VBScript
 vbscript.dll under WinE!
 Currently working on experimental version

 ActionScript
 Partially implemented when Adobe open sourced

the engine; now part of Mozilla’s Tamarin Project

Limitations – variable is not defined!

 Attackers can potentially use intentional errors to
prevent code execution

 Identical input/output is very important
 Easy: document.width
 Hard: window.open()
 Really hard: XMLHTTPRequest
 Centralized verbose error logging!

Limitations – Denial of Service

 JS_SetBranchCallback
 Look familiar?

 Separate thread monitoring execution time

Limitations – User Interaction

 Malicious code could potentially rely upon a user’s
action before execution begins

 We implemented some basic event handling:
 body – onload
 window – focus
 document – onmouse___

 Not foolproof!

CaffeineMonkey

 Ben Feinstein & Daniel Peck @ SecureWorks
 Released Open Source
 Excellent tool for manual reverse engineering of

obfuscation; needs HTML/DOM!
 Promising research that attempts to identify malicious

activity based on behavior, not static signatures.
 http://secureworks.com/research/tools/caffeinemonkey.html

Other Resources

 Tutorials from ISC, excellent starting point
 http://handlers.sans.org/dwesemann/decode/

 Jose Nazario’s CanSecWest presentation
 http://www.cansecwest.com/slides07/csw07-nazario.pdf

 Websense Blogs
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=86
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=98
 http://www.websense.com/securitylabs/blog/blog.php?BlogID=142

http://handlers.sans.org/dwesemann/decode/
http://www.cansecwest.com/slides07/csw07-nazario.pdf
http://www.websense.com/securitylabs/blog/blog.php?BlogID=86
http://www.websense.com/securitylabs/blog/blog.php?BlogID=98
http://www.websense.com/securitylabs/blog/blog.php?BlogID=142

Stephan Chenette
Principle Security Researcher

schenette || websense com

Alex Rice
Sr .Security Researcher

arice || websense com

The End

